Реферат "носители информации". Эволюция компьютерных носителей информации Виды носителей информации

Что было известно первому человеку? Как убить мамонта, бизона или поймать кабана. В эпоху палеолита хватало стен в пещере, чтобы зафиксировать все изученное. Пещерная база данных целиком бы уместилась на скромную флешку размером мегабайт. За 200000 лет своего существования мы узнали о геноме африканской лягушки, нейронных сетях и больше не рисуем на скалах. Сейчас у нас есть диски, облачные хранилища. А также другие виды носителей информации, способные сохранить на одном чипсете всю библиотеку МГУ.

Что такое носитель информации

Носитель информации - это физический объект, свойства и характеристики которого используются для записи и хранения данных. Примерами носителей информации являются пленки, компактные оптические диски, карты, магнитные диски, бумага и ДНК. Носители информации различаются по принципу осуществления записи:

  • печатная или химическая с нанесением краски: книги, журналы, газеты;
  • магнитная: HDD, дискеты;
  • оптическая: CD, Blu-ray;
  • электронная: флешки, твердотельные накопители.

Классифицируются хранилища данных по форме сигнала:

  • аналоговые, использующие для записи непрерывный сигнал: аудио компакт-кассеты и бобины для магнитофонов;
  • цифровые - с дискретным сигналом в виде последовательности чисел: дискеты, флешки.

Первые носители информации

История записи и хранения данных началась 40 тысяч лет назад, когда Homo sapiens пришла идея делать эскизы на стенах своих жилищ. Первое наскальное творчество находится в пещере Шове на юге современной Франции. Галерея содержит 435 рисунков, изображающих львов, носорогов и других представителей фауны позднего палеолита.

На смену Ориньякской культуре в бронзовом веке возник принципиально новый вид носителей информации - туппу́м. Девайс представлял собой пластину из глины и напоминал современный планшет. На поверхность с помощью тростниковой палочки - стилуса - наносились записи. Чтобы труд не размыло дождем, туппумы обжигались. Все таблички с древней документацией тщательно сортировались и хранились в специальных деревянных ящиках.

В Британском музее есть туппум, содержащий информацию о финансовой сделке, произошедшей в Месопотамии во времена правления царя Ассурбанипала. Офицер из свиты принца подтверждал продажу рабыни Арбелы. Табличка содержит его именную печать и записи о ходе операции.

Кипу и папирус

С III тысячелетия до нашей эры в Египте начинают использовать папирус. Запись данных происходит на листы, изготовленные из стеблей растения papyrus. Портативный и легкий вид носителей информации быстро вытеснил свою глиняную предшественницу. На папирусе пишут не только египтяне, но и греки, римляне, византийцы. В Европе материал использовали до XII века. Последний документ, написанный на папирусе, - папский декрет 1057 года.

Одновременно с древними египтянами, на противоположном конце планеты инки изобретают кипу, или «говорящие узелки». Информация фиксировалась с помощью завязывания узлов на прядильных нитях. Кипу хранили данные о налоговых сборах, численности населения. Предположительно использовалась нечисловая информация, но ученым ее только предстоит разгадать.

Бумага и перфокарты

С XII до середины XX века основным хранилищем данных была бумага. Ее использовали для создания печатных и рукописных изданий, книг, средств масс-медиа. В 1808 году из картона начали делать перфокарты - первые цифровые носители информации. Представляли собой листы картона с проделанными в определенной последовательности отверстиями. В отличие от книг и газет, перфокарты считывались машинами, а не людьми.

Изобретение принадлежит американскому инженеру с немецкими корнями Герману Холлериту. Впервые автор применил свое детище для составления статистики смертности и рождаемости в Нью-Йоркском Совете здравоохранения. После пробных попыток, перфокарты использовали для переписи населения США в 1890 году.

Но сама идея проделывать дырки в бумаге, чтобы записывать информацию, была далеко не новой. Еще в 1800 году перфокарты ввел в обиход француз Джозеф-Мари Жаккард для управления ткацким станком. Поэтому технологический прорыв заключался в создании Холлеритом не перфокарт, а табуляционной машины. Это был первый шаг на пути к автоматическому считыванию и вычислению информации. Компания TMC Германа Холлерита по производству табуляционных машин в 1924 году была переименована в IBM.

OMR-карты

Представляют собой листы плотной бумаги с информацией, записанной человеком в виде оптических меток. Сканер распознает метки и обрабатывает данные. OMR-карты используют для составления опросников, тестов с опциональным выбором, бюллетеней и форм, которые необходимо заполнять вручную.

Технология основана на принципе составления перфокарт. Но машина считывает не сквозные отверстия, а выпуклости, или оптические метки. Погрешность исчислений составляет менее 1 %, поэтому OMR-технологию продолжают использовать государственные учреждения, экзаменационные органы, лотереи и букмекерские конторы.

Перфолента

Цифровой носитель информации в виде длинной бумажной полоски с отверстиями. Перфорированные ленты были впервые использованы Базиле Бушоном в 1725 году для управления ткацким станком и механизирования отбора нитей. Но ленты были очень хрупкими, легко рвались и при этом дорого стоили. Поэтому их заменили на перфокарты.

С конца XIX века перфолента получила широкое применение в телеграфии, для ввода данных в компьютеры 1950-1960 годов и в качестве носителей для мини-компьютеров и станков с ЧПУ. Сейчас бобины с намотанной перфолентой стали анахронизмом и канули в Лету. На смену бумажным носителям пришли более мощные и объемные хранилища данных.

Магнитная лента

Дебют магнитной ленты в качестве компьютерного носителя информации состоялся в 1952 году для машины UNIVAC I. Но сама технология появилась гораздо раньше. В 1894 году датский инженер Вольдемар Поульсен обнаружил принцип магнитной записи, работая механиком в Копенгагенской телеграфной компании. В 1898 году ученый воплотил идею в аппарате под названием "телеграфон".

Стальная проволока проходила между двумя полюсами электромагнита. Запись информации на носитель осуществлялась посредством неравномерного намагничивания колебаний электрического сигнала. Вольдемар Поульсен запатентовал свое изобретение. На Всемирной выставке 1900 года в Париже он имел честь записать голос императора Франца-Иосифа на свой девайс. Экспонат с первой магнитной звукозаписью по сей день хранится в Датском музее науки и техники.

Когда патент Поульсена истек, Германия занялась улучшением магнитной записи. В 1930 году стальная проволока была заменена гибкой лентой. Решение использовать магнитные полосы принадлежит австрийско-немецкому разработчику Фрицу Пфлеймеру. Инженер придумал покрывать тонкую бумагу порошком оксида железа и осуществлять запись посредством намагничивания. С использованием магнитной пленки были созданы компакт-кассеты, видеокассеты и современные носители информации для персональных компьютеров.

HDD-диски

Винчестер, HDD или жесткий диск - это аппаратное устройство с энергонезависимой памятью, что означает полное сохранение информации, даже при отключенном питании. Является вторичным запоминающим устройством, состоящим из одной или нескольких пластин, на которые записываются данные с использованием магнитной головки. HDD находятся внутри системного блока в отсеке дисководов. Подключаются к материнской плате с помощью кабеля ATA, SCSI или SATA и к блоку питания.

Первый жесткий диск был разработан американской компанией IBM в 1956 году. Технологию применили в качестве нового вида носителей информации для коммерческого компьютера IBM 350 RAMAC. Аббревиатура расшифровывается как «метод случайного доступа к учету и контролю».

Чтобы вместить девайс у себя дома, потребовалась бы целая комната. Внутри диска было 50 алюминиевых пластин по 61 см в диаметре и 2,5 см шириной. Размер системы хранения данных приравнивался к двум холодильникам. Его вес составлял 900 кг. Емкость RAMAC была всего лишь 5МБ. Смешная цифра на сегодняшний день. Но 60 лет назад это расценивалось как технология завтрашнего дня. После анонсирования разработки, ежедневная газета города Сан Хосе выпустила репортаж под названием «Машина с суперпамятью!».

Размеры и возможности современных HDD

Жесткий диск - компьютерный носитель информации. Используется для хранения данных, включая изображения, музыку, видео, текстовые документы и любые созданные или загруженные материалы. Кроме того, содержат файлы для операционной системы и программного обеспечения.

Первые винчестеры вмещали до нескольких десятков Мбайт. Постоянно развивающаяся технология позволяет современным HDD хранить терабайты информации. Это около 400 фильмов со средним расширением, 80 000 песен в mp3-формате или 70 компьютерных ролевых игр, аналогичных «Скайрим», на одном устройстве.

Дискета

Floppy, или гибкий магнитный диск, - носитель информации, созданный IBM в 1967 году как альтернатива HDD. Дискеты стоили дешевле винчестеров и предназначались для хранения электронных данных. На ранних компьютерах не было CD-ROM или USB. Гибкие диски были единственным способом установки новой программы или резервного копирования.

Вместительность каждой 3,5-дюймовой дискеты была до 1,44 Мбайт, когда одна программа «весила» не менее полутора мегабайт. Поэтому версия Windows 95 появилась сразу на 13 дискетах DMF. Floppy disk на 2,88 Мбайт появился только в 1987 году. Просуществовал этот электронный носитель информации до 2011 года. В современной комплектации компьютеров отсутствуют флоппи-дисководы.

Оптические носители

С появлением квантового генератора началась популяризация оптических запоминающих устройств. Запись осуществляется лазером, а считываются данные за счет оптического излучения. Примеры носителей информации:

  • Blu-ray диски;
  • CD-ROM диски;
  • DVD-R, DVD+R, DVD-RW и DVD+RW.

Устройство представляет собой диск, покрытый слоем поликарбоната. На поверхности находятся микроуглубления, которые считываются лазером при сканировании. Первый коммерческий лазерный диск появился на рынке в 1978 году, а в 1982 году японская компания SONY и Philips выпустили в продажу компакт-диски. Их диаметр составлял 12 см, а разрешение было увеличено до 16 бит.

Электронные носители информации формата CD использовались исключительно для воспроизведения звуковой записи. Но на то время это была передовая технология, за которую в 2009 году Royal Philips Electronics получила награду IEEE. А в январе 2015 года CD был награжден как ценнейшая инновация.

В 1995 году появились цифровые универсальные диски или DVD, ставшие оптическими носителями нового поколения. Для их создания использовалась технология другого типа. Вместо красного лазер DVD использует более короткий инфракрасный свет, что увеличивает объем носителя информации. Двухслойные DVD-диски способны хранить до 8,5 Гбайта данных.

Flash-память

Флеш-память - это интегральная микросхема, которая не требует постоянной мощности для сохранения данных. Другими словами, это энергонезависимая полупроводниковая компьютерная память. Запоминающие устройства с флеш-памятью постепенно завоевывают рынок, вытесняя магнитные носители.

Преимущества Flash-технологии:

  • компактность и мобильность;
  • большой объем;
  • высокая скорость работы;
  • низкое энергопотребление.

К запоминающим устройствам Flash-типа относят:

  • USB-флешки. Это самый простой и дешевый носитель информации. Используется для многократной записи, хранения и передачи данных. Размеры варьируются от 2 Гбайт до 1 Тбайта. Содержит микросхему памяти в пластиковом или алюминиевом корпусе с USB-разъёмом.
  • Карты памяти. Разработаны для хранения данных на телефонах, планшетах, цифровых фотоаппаратах и других электронных девайсах. Отличаются размером, совместимостью и объемом.
  • SSD. Твердотельный накопитель с энергонезависимой памятью. Это альтернатива стандартному жесткому диску. Но в отличие от винчестеров у SSD нет движущийся магнитной головки. За счет этого они обеспечивают быстрый доступ к данным, не издают скрипов, как HDD. Из недостатков - высокая цена.

Облачные хранилища

Облачные онлайн-хранилища - это современные носители информации, представляющие собой сеть из мощных серверов. Вся информация хранится удаленно. Каждый пользователь может получать к данным доступ в любое время и из любой точки мира. Недостаток в полной зависимости от интернета. Если у вас нет подключения к Сети или Wi-Fi, доступ к данным закрыт.

Облачные хранилища гораздо дешевле своих физических аналогов и обладают большим объемом. Технология активно используется в корпоративной и образовательной среде, разработке и проектировании веб-приложений компьютерного софта. На облаке можно хранить любые файлы, программы, резервные копии, использовать их как среду разработки.

Из всех перечисленных видов носителей информации самыми перспективными являются облачные хранилища. Также все больше пользователей ПК переходят с магнитных жестких дисков на твердотельные накопители и носители с Flash-памятью. Развитие голографических технологий и искусственного интеллекта обещает появление принципиально новых девайсов, которые оставят флешки, SDD и диски далеко позади.

ВНИМАНИЕ!
Здесь приводится очень сокращённый текст реферата. Полную версию реферат по информатике можно скачать бесплатно по указанной выше ссылке.

Виды носителей информации

Носитель информации – физическая среда, непосредственно хранящая информацию. Основным носителем информации для человека является его собственная биологическая память (мозг человека). Собственную память человека можно назвать оперативной памятью. Здесь слово “оперативный” является синонимом слова “быстрый”. Заученные знания воспроизводятся человеком мгновенно. Собственную память мы еще можем назвать внутренней памятью, поскольку ее носитель – мозг – находится внутри нас.

Носитель информации - строго определённая часть конкретной информационной системы, служащая для промежуточного хранения или передачи информации.

Основа современных информационных технологий – это ЭВМ. Когда речь идет об ЭВМ, то можно говорить о носителях информации, как о внешних запоминающих устройствах (внешней памяти). Эти носители информации можно классифицировать по различным признакам, например, по типу исполнения, материалу, из которого изготовлен носитель и т.п. Один из вариантов классификация носителей информации представлен на рис. 1.1.

Список носителей информации на рис. 1.1 не является исчерпывающим. Некоторые носители информации мы рассмотрим более подробно в следующих разделах.

Ленточные носители информации

Магнитная лента - носитель магнитной записи, представляющий собой тонкую гибкую ленту, состоящую из основы и магнитного рабочего слоя. Рабочие свойства магнитной ленты характеризуются её чувствительностью при записи и искажениями сигнала в процессе записи и воспроизведения. Наиболее широко применяется многослойная магнитная лента с рабочим слоем из игольчатых частиц магнитно-твёрдых порошков гамма-окиси железа (у-Fе2О3), двуокиси хрома (СrО2) и гамма-окиси железа, модифицированной кобальтом, ориентированных обычно в направлении намагничивания при записи.

Дисковые носители информации

Дисковые носители информации относятся к машинным носителям с прямым доступом. Понятие прямой доступ означает, что ПК может «обратиться» к дорожке, на которой начинается участок с искомой информацией или куда нужно записать новую информацию .

Накопители на дисках наиболее разнообразны:

  • Накопители на гибких магнитных дисках (НГМД), они же флоппи-диски, они же дискеты
  • Накопители на жестких магнитных дисках (НЖМД), они же винчестеры (в народе просто «винты»)
  • Накопители на оптических компакт-дисках:
    • CD-ROM (Compact Disk ROM)
    • DVD-ROM
Имеются и другие разновидности дисковых носителей информации, например, магнитооптические диски, но ввиду их малой распространенности мы их рассматривать не будем.

Накопители на гибких магнитных дисках

Некоторое время назад дискеты были самым популярным средством передачи информации с компьютера на компьютер, так как интернет в те времена был большой редкостью, компьютерные сети тоже, а устройства для чтения-записи компакт дисков стоили очень дорого. Дискеты и сейчас используются, но уже достаточно редко. В основном для хранения различных ключей (например, при работе с системой клиент-банк) и для передачи различной отчетной информации государственным надзорным службам.

Дискета - портативный магнитный носитель информации, используемый для многократной записи и хранения данных сравнительно небольшого объема. Этот вид носителя был особенно распространён в 1970-х - начале 2000-х годов. Вместо термина «дискета» иногда используется аббревиатура ГМД - «гибкий магнитный диск» (соответственно, устройство для работы с дискетами называется НГМД - «накопитель на гибких магнитных дисках», жаргонный вариант - флоповод, флопик, флопарь от английского floppy-disk или вообще "печенюшка"). Обычно дискета представляет собой гибкую пластиковую пластинку, покрытую ферромагнитным слоем, отсюда английское название «floppy disk» («гибкий диск»). Эта пластинка помещается в пластмассовый корпус, защищающий магнитный слой от физических повреждений. Оболочка бывает гибкой или прочной. Запись и считывание дискет осуществляется с помощью специального устройства - дисковод (флоппи-дисковод). Дискета обычно имеет функцию защиты от записи, посредством которой можно предоставить доступ к данным только в режиме чтения. Внешний вид 3,5” дискеты представлен на рис. 1.2.

Накопители на жестких магнитных дисках

В качестве накопителей на жестких магнитных дисках широкое распространение в ПК получили накопители типа «винчестер».

Термин винчестер возник из жаргонного названия первой модели жесткого диска емкостью 16 КВ (IBM, 1973 г.), имевшего 30 дорожек по 30 секторов, что случайно совпало с калибром 30/30 известного охотничьего ружья «Винчестер».

Накопители на оптических дисках

Компакт-диск («CD», «Shape CD», «CD-ROM», «КД ПЗУ») - оптический носитель информации в виде диска с отверстием в центре, информация с которого считывается с помощью лазера. Изначально компакт-диск был создан для цифрового хранения аудио (т. н. Audio-CD), однако в настоящее время широко используется как устройство хранения данных широкого назначения (т. н. CD-ROM). Аудио-компакт-диски по формату отличаются от компакт-дисков с данными, и CD-плееры обычно могут воспроизводить только их (на компьютере, конечно, можно прочитать оба вида дисков). Встречаются диски, содержащие как аудиоинформацию, так и данные - их можно и послушать на CD-плеере, и прочитать на компьютере.

Оптические диски имеют обычно поликарбонатную или стеклянную термообработанную основу. Рабочий слой оптических дисков изготавливают в виде тончайших плёнок легкоплавких металлов (теллур) или сплавов (теллур-селен, теллур-углерод, теллур-селен-свинец и др.), органических красителей. Информационная поверхность оптических дисков покрыта миллиметровым слоем прочного прозрачного пластика (поликарбоната). В процессе записи и воспроизведения на оптических дисках роль преобразователя сигналов выполняет лазерный луч, сфокусированный на рабочем слое диска в пятно диаметром около 1 мкм. При вращении диска лазерный луч следует вдоль дорожки диска, ширина которой также близка к 1 мкм. Возможность фокусировки луча в пятно малого размера позволяет формировать на диске метки площадью 1-3 мкм. В качестве источника света используются лазеры (аргоновые, гелий-кадмиевые и др.). В результате плотность записи оказывается на несколько порядков выше предела, обеспечиваемого магнитным способом записи. Информационная ёмкость оптического диска достигает 1 Гбайт (при диаметре диска 130 мм) и 2-4 Гбайт (при диаметре 300 мм).

Широкое применение в качестве носителя информации получили также магнитооптические компакт-диски типа RW (Re Writeble). На них запись информации осуществляется магнитной головкой с одновременным использованием лазерного луча. Лазерный луч нагревает точку на диске, а электромагнит изменяет магнитную ориентацию этой точки. Считывание же производится лазерным лучом меньшей мощности.

Во второй половине 1990-х годов появились новые, весьма перспективные носители документированной информации - цифровые универсальные видеодиски DVD (Digital Versatile Disk) типа DVD-ROM, DVD-RAM, DVD-R с большой ёмкостью (до 17 Гбайт).

По технологии применения оптические, магнитооптические и цифровые компакт-диски делятся на 3 основных класса:

  1. Диски с постоянной (нестираемой) информацией (CD-ROM). Это пластиковые компакт-диски диаметром 4,72 дюйма и толщиной 0,05 дюйма. Они изготавливаются с помощью стеклянного диска-оригинала, на который наносится фоторегистрирующий слой. В этом слое лазерная система записи формирует систему питов (меток в виде микроскопических впадин), которая затем переносится на тиражируемые диски-копии. Считывание информации осуществляется также лазерным лучом в оптическом дисководе персонального компьютера. CD-ROM обычно обладают ёмкостью 650 Мбайт и используются для записи цифровых звуковых программ, программного обеспечения для ЭВМ и т.п.;
  2. Диски, допускающие однократную запись и многократное воспроизведение сигналов без возможности их стирания (CD-R; CD-WORM - Write-Once, Read-Many - один раз записал, много раз считал). Используются в электронных архивах и банках данных, во внешних накопителях ЭВМ. Они представляют собой основу из прозрачного материала, на которую нанесён рабочий слой;
  3. Реверсивные оптические диски, позволяющие многократно записывать, воспроизводить и стирать сигналы (CD-RW; CD-E). Это наиболее универсальные диски, способные заменить магнитные носители практически во всех областях применения. Они аналогичны дискам для однократной записи, но содержат рабочий слой, в котором физические процессы записи являются обратимыми. Технология изготовления таких дисков сложнее, поэтому они стоят дороже дисков для однократной записи.
В настоящее время оптические (лазерные) диски являются наиболее надёжными материальными носителями документированной информации, записанной цифровым способом. Вместе с тем активно ведутся работы по созданию ещё более компактных носителей информации с использованием так называемых нанотехнологий, работающих с атомами и молекулами. Плотность упаковки элементов, собранных из атомов, в тысячи раз больше, чем в современной микроэлектронике. В результате один компакт-диск, изготовленный по нанотехнологии, может заменить тысячи лазерных дисков.

Электронные носители информации

Вообще говоря, все рассмотренные ранее носители тоже косвенно связаны с электроникой. Однако имеется вид носителей, где информации хранится не на магнитных/оптических дисках, а в микросхемах памяти. Эти микросхемы выполнены по FLASH-технологии, поэтому такие устройства иногда называют FLASH-дисками (в народе просто «флэшка»). Микросхема, как можно догадаться, диском не является. Однако операционные системы носители информации с FLASH-памятью определяют как диск (для удобства пользователя), поэтому название «диск» имеет право на существование.

Флэш-память (англ. Flash-Memory) - разновидность твердотельной полупроводниковой энергонезависимой перезаписываемой памяти. Флэш-память может быть прочитана сколько угодно раз, но писать в такую память можно лишь ограниченное число раз (обычно около 10 тысяч раз). Несмотря на то, что такое ограничение есть, 10 тысяч циклов перезаписи - это намного больше, чем способна выдержать дискета или CD-RW. Стирание происходит участками, поэтому нельзя изменить один бит или байт без перезаписи всего участка (это ограничение относится к самому популярному на сегодня типу флэш-памяти - NAND). Преимуществом флэш-памяти над обычной является её энергонезависимость - при выключении энергии содержимое памяти сохраняется. Преимуществом флэш-памяти над жёсткими дисками, CD-ROM-ами, DVD является отсутствие движущихся частей. Поэтому флэш-память более компактна, дешева (с учётом стоимости устройств чтения-записи) и обеспечивает более быстрый доступ.

Хранение информации

Хранение информации - это способ распространения информации в пространстве и времени. Способ хранения информации зависит от ее носителя (книга - библиотека, картина - музей, фотография - альбом). Этот процесс такой же древний, как и жизнь человеческой цивилизации. Уже в древности человек столкнулся с необходимостью хранения информации: зарубки на деревьях, чтобы не заблудиться во время охоты; счет предметов с помощью камешков, узелков; изображение животных и эпизодов охоты на стенах пещер.

ЭВМ предназначена для компактного хранения информации с возможностью быстрого доступа к ней.

Информационная система - это хранилище информации, снабженное процедурами ввода, поиска и размещения и выдачи информации. Наличие таких процедур - главная особенность информационных систем, отличающих их от простых скоплений информационных материалов.

От информации к данным

Человек по-разному подходит к хранению информации. Все зависит от того сколько ее и как долго ее нужно хранить. Если информации немного ее можно запомнить в уме. Нетрудно запомнить имя своего друга и его фамилию. А если нужно запомнить его номер телефона и домашний адрес мы пользуемся записной книжкой. Когда информация запомнена (сохранена) ее называют данные.

Данные в компьютере имеют различное назначение. Некоторые из них нужны только в течение короткого периода, другие должны храниться длительное время. Вообще говоря, в компьютере есть довольно много «хитрых» устройств, которые предназначены для хранения информации. Например, регистры процессора, регистровая КЭШ-память и т.п. Но большинство «простых смертных» даже не слышали таких «страшных» слов. Поэтому мы ограничимся рассмотрением оперативной памяти (ОЗУ) и постоянной памяти, к которой относятся уже рассмотренные нами носители информации.

Оперативная память компьютера

Как уже было сказано, в компьютере тоже есть несколько средств для хранения информации. Самый быстрый способ запомнить данные - это записать их в электронные микросхемы. Такая память называется оперативной памятью. Оперативная память состоит из ячеек. В каждой ячейке может храниться один байт данных.

У каждой ячейки есть свои адрес. Можно считать, что это как бы номер ячейки, поэтому такие ячейки еще называют адресными ячейками. Когда компьютер отправляет данные на хранение в оперативную память, он запоминает адреса, в которые эти данные помещены. Обращаясь к адресной ячейке, компьютер находит в ней байт данных.

Регенерация оперативной памяти

Адресная ячейка оперативной памяти хранит один байт, а поскольку байт состоит из восьми битов, то в ней есть восемь битовых ячеек. Каждая битовая ячейка микросхемы оперативной памяти хранит электрический заряд.

Заряды не могут храниться в ячейках долго - они «стекают». Всего за несколько десятых долей секунды заряд в ячейке уменьшается настолько, что данные утрачиваются.

Дисковая память

Для постоянного хранения данных используют носители информации (см. раздел «Виды носителей информации»). Компакт диски и дискеты имеют относительно небольшое быстродействие, поэтому большая часть информации, к которой необходим постоянный доступ, хранится на жестком диске. Вся информация на диске хранится в виде файлов. Для управления доступом к информации существует файловая система. Имеется несколько типов файловых систем.

Структура данных на диске

Чтобы данные можно было не только записать на жесткий диск, а потом еще и прочитать, надо точно знать, что и куда было записано. У всех данных должен быть адрес. У каждой книги в библиотеке есть свой зал, стеллаж, полка и инвентарный номер - это как бы ее адрес. По такому адресу книгу можно найти. Все данные, которые записываются на жесткий диск, тоже должны иметь адрес, иначе их не разыскать.

Файловые системы

Стоит отметить, что структура данных на диске зависит от типа файловой системы. Все файловые системы состоят из структур, необходимых для хранения и управления данными. Эти структуры обычно включают загрузочную запись операционной системы, каталоги и файлы. Файловая система также исполняет три главных функции:

  1. Отслеживание занятого и свободного места
  2. Поддержка имен каталогов и файлов
  3. Отслеживание физического местоположения каждого файла на диске.
Различные файловые системы используются различными операционными системами (ОС). Некоторые OС могут распознавать только одну файловую систему, в то время как другие OС могут распознавать несколько. Некоторые из наиболее распространенных файловых систем:
  • FAT (File Allocation Table)
  • FAT32 (File Allocation Table 32)
  • NTFS (New Technology File System)
  • HPFS (High Performance File System)
  • NetWare File System
  • Linux Ext2 и Linux Swap
FAT

Файловая система FAT используется DOS, Windows 3.x и Windows 95. Файловая система FAT также доступна в Windows 98/Me/NT/2000 и OS/2.

Файловая система FAT реализуется при помощи File Allocation Table (FAT - Таблицы Распределения Файлов) и кластеров. FAT - сердце файловой системы. Для безопасности FAT имеет дубликат, чтобы защитить ее данные от случайного стирания или неисправности. Кластер - самая маленькая единица системы FAT для хранения данных. Один кластер состоит из фиксированного числа секторов диска. В FAT записано, какие кластеры используются, какие являются свободными, и где файлы расположены в пределах кластеров.

FAT-32

FAT32 - файловая система, которая может использоваться Windows 95 OEM Service Release 2 (версия 4.00.950B), Windows 98, Windows Me и Windows 2000. Однако, DOS, Windows 3.x, Windows NT 3.51/4.0, более ранние версии Windows 95 и OS/2 не распознают FAT32 и не могут загружать или использовать файлы на диске или разделе FAT32.

FAT32 - развитие файловой системы FAT. Она основана на 32-битовой таблице распределения файлов, более быстрой, чем 16-битовые таблицы, используемые системой FAT. В результате, FAT32 поддерживает диски или разделы намного большего размера (до 2 ТБ).

NTFS

NTFS (Новая Технология Файловой Системы) доступна только Windows NT/2000. NTFS не рекомендуется использовать на дисках размером менее 400 МБ, потому что она требует много места для структур системы.

Центральная структура файловой системы NTFS - это MFT (Master File Table). NTFS сохраняет множество копий критической части таблицы для защиты от неполадок и потери данных.

HPFS

HPFS (Файловая система с высокой производительностью) - привилегированная файловая система для OS/2, которая также поддерживается старшими версиями Windows NT.

В отличие от файловых систем FAT, HPFS сортирует свои каталоги, основываясь на именах файлов. HPFS также использует более эффективную структуру для организации каталога. В результате доступ к файлу часто быстрее и место используется более эффективно, чем с файловой системой FAT.

HPFS распределяет данные файла в секторах, а не в кластерах. Чтобы сохранить дорожку, которая имеет секторы или не используется, HPFS организовывает диск или раздел в виде групп по 8 МБ. Такое группирование улучшает производительность, потому что головки чтения/записи не должны возвращаться на нулевую дорожку каждый раз, когда ОС нуждается в доступе к информации о доступном месте или местоположении необходимого файла.

NetWare File System

Операционная система Novell NetWare использует файловую систему NetWare, которая была разработана специально для использования службами NetWare.

Linux Ext2 и Linux Swap

Файловые системы Linux Ext2 и Linux были разработаны для ОС Linux OS (Версия UNIX для свободно распространения). Файловая система Linux Ext2 поддерживает диск или раздел с максимальным размером 4 ТБ.

Каталоги и путь к файлу

Рассмотрим для примера структуру дискового пространства системы FAT, как самой простой.

Информационная структура дискового пространства - это внешнее представление дискового пространства, ориентированное на пользователя и определяемое такими элементами, как том (логический диск), каталог (папка, директория) и файл. Эти элементы используются при общении пользователя с операционной системой. Общение осуществляется с помощью команд, выполняющих операции доступа к файлам и каталогам.

Источники информации

  1. Информатика: Учебник. – 3-е перераб. изд. / Под ред. Н.В. Макаровой. – М.: Финансы и статистика, 2002. – 768 с.: ил.
  2. Волк В.К. Исследование функциональной структуры памяти персонального компьютера. Лабораторный практикум. Учебное пособие. Издательство Курганского государственного университета, 2004 г. – 72 с.

Накопители на гибких магнитных дисках: принцип действия, технические характеристики, основные компоненты. Накопители на жестких магнитных дисках: форм-факторы, принцип работы, типы, основные характеристики, режимы работы. Конфигурирование и форматирование магнитных дисков. Утилиты обслуживания жестких магнитных дисков. Логическая структура и формат магнитооптических и компакт-дисков. Приводы CD-R (RW), DVD-R (RW), ZIP: принцип действия, основные компоненты, технические характеристики. Магнитооптические накопители, стримеры, флэш-диски. Обзор основных современных моделей.

Студент должен знать:

Принцип действия и основные компоненты дисковода FDD;

Характеристики и режимы работы накопителя на жестких магнитных дисках;

Принцип работы приводов магнитооптических и компакт-дисков;

Форматы оптических и магнитооптических дисков;

Студент должен уметь:

Записывать информацию на различные носители;

Использовать программные средства технического обслуживания жесткого диска;

Определять основные характеристики накопителей;

Цели занятия:

Ознакомить студентов с основными компонентами накопителями информации.

Изучить типы накопителей информации их характеристики.

Воспитание информационной культуры учащихся, внимательности, аккуратности, дисциплинированности, усидчивости.

Развитие познавательных интересов, навыков самоконтроля, умения конспектировать.

Ход занятия :

Теоретическая часть.

Хранение данных на магнитных носителях

Практически во всех персональных компьютерах информация хранится на носителях, использующих магнитные или оптические принципы. При использовании магнитных устройств хранения двоичные данные “превращаются” в небольшие металлические намагниченные частички, расположенные на плоском диске или ленте в виде “узора”. Этот магнитный “узор” впоследствии может быть расшифрован в поток двоичных данных.

В основе работы магнитных носителей - накопителей на жестких и гибких дисках - лежит электромагнетизм. Суть его состоит в том, что при пропускании через проводник электрического тока вокруг него образуется магнитное поле (рис. 1). Это поле воздействует на оказавшееся в нем ферромагнитное вещество. При изменении направления тока полярность магнитного поля также изменяется. Явление электромагнетизма используется в электродвигателях для генерации сил, воздействующих на магниты, которые установлены на вращающемся валу.

Однако существует и противоположный эффект: в проводнике, на который воздействует переменное магнитное поле, возникает электрический ток. При изменении полярности магнитного поля изменяется и направление электрического тока (рис. 2).

Головка чтения/записи в любом дисковом накопителе состоит из U-образного ферромагнитного сердечника и намотанной на него катушки (обмотки), по которой может протекать электрический ток. При пропускании тока через обмотку в сердечнике (магнитопроводе) головки создается магнитное поле (рис. 3). При переключении направления протекающего тока полярность магнитного поля также изменяется. В сущности, головки представляют собой электромагниты, полярность которых можно очень быстро изменить, переключив направление пропускаемого электрического тока.

Рис. 1. При пропускании тока через проводник вокруг него образуется магнитное поле

Рис. 2. При перемещении проводника в магнитном поле в нем генерируется электрический ток

Рис. 3. Головка чтения/записи

Магнитное поле в сердечнике частично распространяется в окружающее пространство благодаря наличию зазора, “пропиленного” в основании буквы U. Если вблизи зазора располагается другой ферромагнетик (рабочий слой носителя), то магнитное поле в нем локализуется, поскольку подобные вещества обладают меньшим магнитным сопротивлением, чем воздух. Магнитный поток, пересекающий зазор, замыкается через носитель, что приводит к поляризации его магнитных частиц (доменов) в направлении действия поля. Направление поля и, следовательно, остаточная намагниченность носителя зависят от полярности электрического поля в обмотке головки.

Гибкие магнитные диски обычно делаются на лавсановой, а жесткие - на алюминиевой или стеклянной подложке, на которую наносится слой ферромагнитного материала. Рабочий слой в основном состоит из окиси железа с различными добавками. Магнитные поля, создаваемые отдельными доменами на чистом диске, ориентированы случайным образом и взаимно компенсируются на любом сколько-нибудь протяженном (макроскопическом) участке поверхности диска, поэтому его остаточная намагниченность равна нулю.

Если участок поверхности диска при протягивании вблизи зазора головки подвергается воздействию магнитного поля, то домены выстраиваются в определенном направлении и их магнитные поля больше не компенсируют друг друга. В результате на этом участке появляется остаточная намагниченность, которую можно впоследствии обнаружить. Выражаясь научным языком, можно сказать: остаточный магнитный поток, формируемый данным участком поверхности диска, становится отличным от нуля.

Конструкции головок чтения/записи

По мере развития технологии производства дисковых накопителей совершенствовались и конструкции головок чтения/записи. Первые головки представляли собой сердечники с обмоткой (электромагниты). По современным меркам их размеры были огромными, а плотность записи - чрезвычайно низкой. За прошедшие годы конструкции головок прошли долгий путь развития от первых головок с ферритовыми сердечниками до современных типов.

Чаще всего используются головки следующих четырех типов:

ü ферритовые;

ü с металлом в зазоре (MIG);

ü тонкопленочные (TF);

ü магниторезистивные (MR);

ü гигантские магниторезистивные (GMR).

· Ферритовые головки

Классические ферритовые головки впервые были использованы в накопителе Winchester 30-30 компании IBM. Их сердечники делаются на основе прессованного феррита (на основе окиси железа). Магнитное поле в зазоре возникает при протекании через обмотку электрического тока. В свою очередь, при изменениях напряженности магнитного поля вблизи зазора в обмотке наводится электродвижущая сила. Таким образом, головка является универсальной, т.е. может использоваться как для записи, так и для считывания. Размеры и масса ферритовых головок больше, чем у тонкопленочных; поэтому, чтобы предотвратить их нежелательные контакты с поверхностями дисков, приходится увеличивать зазор.

За время существования ферритовых головок их первоначальная (монолитная) конструкция была значительно усовершенствована. Были разработаны, в частности, так называемые стеклоферритовые (композитные) головки, небольшой ферритовый сердечник которых установлен в керамический корпус. Ширина сердечника и магнитного зазора таких головок меньше, что позволяет повысить плотность размещения дорожек записи. Кроме того, снижается их чувствительность к внешним магнитным помехам.

· Головки с металлом в зазоре

Головки с металлом в зазоре (Metal-In-Gap - MIG) появились в результате усовершенствования конструкции композитной ферритовой головки. В таких головках магнитный зазор, расположенный в задней части сердечника, заполнен металлом. Благодаря этому существенно уменьшается склонность материала сердечника к магнитному насыщению, что позволяет повысить магнитную индукцию в рабочем зазоре и, следовательно, выполнить запись на диск с большей плотностью. Кроме того, градиент магнитного поля, создаваемого головкой с металлом в зазоре, выше, а это означает, что на поверхности диска формируются намагниченные участки с более четко выраженными границами (уменьшается ширина зон смены знака).

Эти головки позволяют использовать носители с большой коэрцитивной силой и тонкопленочным рабочим слоем. За счет уменьшения общей массы и улучшения конструкции такие головки могут располагаться ближе к поверхности носителя.

Головки с металлом в зазоре бывают двух видов: односторонние и двусторонние (т.е. с одним и с двумя металлизированными зазорами). В односторонних головках прослойка из магнитного сплава расположена только в заднем (нерабочем) зазоре, а в двусторонних - в обоих. Слой металла наносится методом вакуумного напыления. Индукция насыщения магнитного сплава примерно вдвое больше, чем у феррита, что, как уже отмечалось, позволяет осуществлять запись на носители с большой коэрцитивной силой, которые используются в накопителях высокой емкости. Двусторонние головки в этом отношении лучше односторонних.

· Тонкопленочные головки

Тонкопленочные (Thin Film - TF) головки производятся почти по той же технологии, что и интегральные схемы, т.е. путем фотолитографии. На одной подложке можно “напечатать” сразу несколько тысяч головок, которые получаются в результате маленькими и легкими.

Рабочий зазор в тонкопленочных головках можно сделать очень узким, причем его ширина регулируется в процессе производства путем наращивания дополнительных слоев немагнитного алюминиевого сплава. Алюминий полностью заполняет рабочий зазор и хорошо защищает его от повреждений (сколов краев) при случайных контактах с диском. Собственно сердечник делается из сплава железа и никеля, индукция насыщения которого в 2–4 раза больше, чем у феррита.

Формируемые тонкопленочными головками участки остаточной намагниченности на поверхности диска имеют четко выраженные границы, что позволяет добиться очень высокой плотности записи. Благодаря небольшому весу и малым размерам головок можно значительно уменьшить просвет между ними и поверхностями дисков по сравнению с ферритовыми и MIG-головками: в некоторых накопителях его величина не превышает 0,05 мкм. В результате, во-первых, повышается остаточная намагниченность участков поверхности носителя и, во-вторых, увеличивается амплитуда сигнала и улучшается соотношение “сигнал–шум” в режиме считывания, что в итоге сказывается на достоверности записи и считывания данных.

В настоящее время тонкопленочные головки используются в большинстве накопителей высокой емкости, особенно в малогабаритных моделях, практически вытеснив головки с металлом в зазоре. Их конструкция и характеристики постоянно улучшаются, но, скорее всего, в ближайшее время они будут вытеснены магниторезистивными головками.

· Магниторезистивные головки

Магниторезистивные (Magneto-Resistive - MR) головки появились сравнительно недавно. Они разработаны компанией IBM и позволяют добиться самых высоких значений плотности записи и быстродействия накопителей. Впервые магниторезистивные головки были установлены в накопителе на жестких дисках емкостью 1 Гбайт (3,5") компании IBM в 1991 году.

Все головки являются детекторами, т.е. регистрируют изменения в зонах намагниченности и преобразуют их в электрические сигналы, которые могут быть интерпретированы как данные. Однако при магнитной записи существует одна проблема: при уменьшении магнитных доменов носителя уменьшается уровень сигнала головки и существует вероятность принять шум за “настоящий” сигнал. Для решения этой проблемы необходимо иметь эффективную головку чтения, которая более достоверно сможет определить наличие сигнала.

Магниторезистивные головки дороже и сложнее головок других типов, поскольку в их конструкции есть добавочные элементы, а технологический процесс включает несколько дополнительных этапов. Ниже перечислены основные отличия магниторезистивных головок от обычных:

v к ним должны быть подведены дополнительные провода для подачи измерительного тока на резистивный датчик;

v в процессе производства используется 4–6 дополнительных масок (фотошаблонов);

v благодаря высокой чувствительности магниторезистивные головки более восприимчивы к внешним магнитным полям, поэтому их приходится тщательно экранировать.

Во всех рассмотренных ранее головках в процессе записи и считывания “работал” один и тот же зазор, а в магниторезистивной головке их два - каждый для своей операции. При разработке головок с одним рабочим зазором приходится идти на компромисс при выборе его ширины. Дело в том, что для улучшения параметров головки в режиме считывания нужно уменьшать ширину зазора (для увеличения разрешающей способности), а при записи зазор должен быть шире, поскольку при этом магнитный поток проникает в рабочий слой на большую глубину (“намагничивая” его по всей толщине). В магниторезистивных головках с двумя зазорами каждый из них может иметь оптимальную ширину. Еще одна особенность рассматриваемых головок заключается в том, что их записывающая (тонкопленочная) часть формирует на диске более широкие дорожки, чем это необходимо для работы считывающего узла (магниторезистивного). В данном случае считывающая головка “собирает” с соседних дорожек меньше магнитных помех.

· Гигантские магниторезистивные головки

В 1997 году IBM анонсировала новый тип магниторезистивных головок, обладающих намного большей чувствительностью. Они были названы гигантскими магниторезистивными головками (Giant Magnetoresistive - GMR). Такое название они получили на основе используемого эффекта (хотя по размеру были меньше стандартных магниторезистивных головок). Эффект GMR был открыт в 1988 году в кристаллах, помещенных в очень сильное магнитное поле (приблизительно в 1 000 раз превышающее магнитное поле, используемое в накопителях на жестких дисках).

Способы кодирования данных

Данные на магнитном носителе хранятся в аналоговой форме. В то же время сами данные представлены в цифровом виде, так как являются последовательностью нулей и единиц. При выполнении записи цифровая информация, поступая на магнитную головку, создает на диске магнитные домены соответствующей полярности. Если во время записи на головку поступает положительный сигнал, магнитные домены поляризуются в одном направлении, а если отрицательный - в противоположном. Когда меняется полярность записываемого сигнала, происходит также изменение полярности магнитных доменов.

Если во время воспроизведения головка регистрирует группу магнитных доменов одинаковой полярности, она не генерирует никаких сигналов; генерация происходит только тогда, когда головка обнаруживает изменение полярности. Эти моменты изменения полярности называются сменой знака. Каждая смена знака приводит к тому, что считывающая головка выдает импульс напряжения; именно эти импульсы устройство регистрирует во время чтения данных. Но при этом считывающая головка генерирует не совсем тот сигнал, который был записан; на самом деле она создает ряд импульсов, каждый из которых соответствует моменту смены знака.

Чтобы оптимальным образом расположить импульсы в сигнале записи, необработанные исходные данные пропускаются через специальное устройство, которое называется кодером/декодером (encoder/decoder). Это устройство преобразует двоичные данные в электрические сигналы, оптимизированные в аспекте размещения зон смены знака на дорожке записи. Во время считывания кодер/декодер выполняет обратное преобразование: восстанавливает из сигнала последовательность двоичных данных. За прошедшие годы было разработано несколько методов кодирования данных, причем главной целью разработчиков было достижение максимальной эффективности и надежности записи и считывания информации.

При работе с цифровыми данными особое значение приобретает синхронизация. Во время считывания или записи очень важно точно определить момент каждой смены знака. Если синхронизация отсутствует, то момент смены знака может быть определен неправильно, в результате чего неизбежна потеря или искажение информации. Чтобы предотвратить это, работа передающего и принимающего устройств должна быть строго синхронизирована. Существует два пути решения данной проблемы. Во-первых, синхронизировать работу двух устройств, передавая специальный сигнал синхронизации (или синхросигнал) по отдельному каналу связи. Во-вторых, объединить синхросигнал с сигналом данных и передать их вместе по одному каналу. Именно в этом и заключается суть большинства способов кодирования данных.

Хотя разработано великое множество самых разнообразных методов, на сегодняшний день реально используются только три из них:

ü частотная модуляция (FM);

ü модифицированная частотная модуляция (MFM);

ü кодирование с ограничением длины поля записи (RLL).

Частотная модуляция (FM)

Метод кодирования FM (Frequency Modulation - частотная модуляция) был разработан прежде других и использовался при записи на гибкие диски так называемой одинарной плотности (single density) в первых ПК. Емкость таких односторонних дискет составляла всего 80 Кбайт. В 1970-х годах запись по методу частотной модуляции использовалась во многих устройствах, но сейчас от него полностью отказались.

Модифицированная частотная модуляция (MFM)

Основной целью разработчиков метода MFM (Modified Frequency Modulation - модифицированная частотная модуляция) было сокращение количества зон смены знака для записи того же объема данных по сравнению с FM-кодированием и соответственно увеличение потенциальной емкости носителя. При этом способе записи количество зон смены знака, используемых только для синхронизации, уменьшается. Синхронизирующие переходы записываются только в начало ячеек с нулевым битом данных и только в том случае, если ему предшествует нулевой бит. Во всех остальных случаях синхронизирующая зона смены знака не формируется. Благодаря такому уменьшению количества зон смены знака при той же допустимой плотности их размещения на диске информационная емкость по сравнению с записью по методу FM удваивается.

Вот почему диски, записанные по методу MFM, часто называют дисками двойной плотности (double density). Поскольку при рассматриваемом способе записи на одно и то же количество зон смены знака приходится вдвое больше “полезных” данных, чем при FM-кодировании, скорость считывания и записи информации на носитель также удваивается.

Кодирование с ограничением длины поля записи (RLL)

На сегодняшний день наиболее популярен метод кодирования с ограничением длины поля записи (Run Length Limited - RLL). Он позволяет разместить на диске в полтора раза больше информации, чем при записи по методу MFM, и в три раза больше, чем при FM-кодировании. При использовании этого метода происходит кодирование не отдельных битов, а целых групп, в результате чего создаются определенные последовательности зон смены знака.

Метод RLL был разработан IBM и сначала использовался в дисковых накопителях больших машин. В конце 1980-х годов его стали использовать в накопителях на жестких дисках ПК, а сегодня он применяется почти во всех ПК.

Измерение емкости накопителя

В декабре 1998 года Международная электротехническая комиссия (МЭК), занимающаяся стандартизацией в области электротехники, представила в качестве официального стандарта систему названий и символов единиц измерения для использования в области обработки и передачи данных. До недавнего времени при одновременном использовании десятичной и двоичной систем измерений один мегабайт мог быть равен как 1 млн байт (106), так и 1 048 576 байт (220). Стандартные сокращения единиц, используемые для измерения емкости магнитных и других накопителей, приведены в табл. 1.

В соответствии с новым стандартом 1 MiB (mebibyte) содержит 220 (1 048 576) байт, а 1 Мбайт (мегабайт) - 106 (1 000 000) байт. К сожалению, не существует общепринятого способа отличать двоичные кратные единицы измерения от десятичных. Другими словами, английское сокращение MB (или M) может обозначать как миллионы байтов, так и мегабайты.

Как правило, объемы памяти измеряются в двоичных единицах, но емкость накопителей - и в десятичных и в двоичных, что часто приводит к недоразумениям. Заметьте также, что в английском варианте биты (bits) и байты (Bytes) отличаются регистром первой буквы (она может быть строчной или прописной). Например, при обозначении миллионов битов используется строчная буква “b”, в результате чего единица измерения миллион битов в секунду обозначается Mbps, в то время как MBps означает миллион байтов в секунду.

Что такое жесткий диск

Самым необходимым и в то же время самым загадочным компонентом компьютера является накопитель на жестком диске. Как известно, он предназначен для хранения данных, и последствия его выхода из строя зачастую оказываются катастрофическими. Для правильной эксплуатации или модернизации компьютера необходимо хорошо представлять себе, что же это такое - накопитель на жестком диске.

Основными элементами накопителя являются несколько круглых алюминиевых или некристаллических стекловидных пластин. В отличие от гибких дисков (дискет), их нельзя согнуть; отсюда и появилось название жесткий диск (рис. 4). В большинстве устройств они несъемные, поэтому иногда такие накопители называются фиксированными (fixed disk). Существуют также накопители со сменными дисками, например устройства Iomega Zip и Jaz.

Новейшие достижения

Почти за 20 лет, прошедших с того времени, как жесткие диски стали привычными компонентами персональных компьютеров, их параметры радикально изменились. Чтобы дать некоторое представление о том, как далеко зашел процесс усовершенствования жестких дисков, приведем самые яркие факты.

Максимальная емкость 5,25-дюймовых накопителей увеличилась от 10 Мбайт (1982 год) до 180 Гбайт и больше для 3,5-дюймовых накопителей половинной высоты (Seagate Barracuda 180). Емкость 2,5-дюймовых дисководов с высотой не более 12,5 мм, которые используются в портативных компьютерах, выросла до 32 Гбайт (IBM Travelstar 32GH). Жесткие диски объемом менее 10 Гбайт в современных настольных компьютерах практически не используются.

Скорость передачи данных увеличилась от 85–102 Кбайт/с в компьютере IBM XT (1983 год) до 51,15 Мбайт/с в наиболее быстродействующих системах (Seagate Cheetah 73LP).

Среднее время поиска (т.е. время установки головки на нужную дорожку) уменьшилось от 85 мс в компьютере IBM XT (1983 год) до 4,2 мс в одном из самых быстродействующих на сегодняшний день дисководе (Seagate Cheetah X15).

В 1982 году накопитель емкостью 10 Мбайт стоил более 1500 долларов (150 долларов за мегабайт). В настоящее время, стоимость жестких дисков снизилась до половины цента за мегабайт.

Рис. 4. Вид накопителя на жестких дисках со снятой верхней крышкой

Принципы работы накопителей на жестких дисках

В накопителях на жестких дисках данные записываются и считываются универсальными головками чтения/записи с поверхности вращающихся магнитных дисков, разбитых на дорожки и секторы (512 байт каждый), как показано на рис. 5.

В накопителях обычно устанавливается несколько дисков, и данные записываются на обеих сторонах каждого из них. В большинстве накопителей есть по меньшей мере два или три диска (что позволяет выполнять запись на четырех или шести сторонах), но существуют также устройства, содержащие до 11 и более дисков. Однотипные (одинаково расположенные) дорожки на всех сторонах дисков объединяются в цилиндр (рис. 6). Для каждой стороны диска предусмотрена своя дорожка чтения/записи, но при этом все головки смонтированы на общем стержне, или стойке. Поэтому головки не могут перемещаться независимо друг от друга и двигаются только синхронно.

Жесткие диски вращаются намного быстрее, чем гибкие. Частота их вращения даже в большинстве первых моделей составляла 3 600 об/мин (т.е. в 10 раз больше, чем в накопителе на гибких дисках) и до последнего времени была почти стандартом для жестких дисков. Но в настоящее время частота вращения жестких дисков возросла. Например, в портативном компьютере Toshiba диск объемом 3,3 Гбайт вращается с частотой 4 852 об/мин, но уже существуют модели с частотами 5 400, 5 600, 6 400, 7 200, 10 000 и даже 15 000 об/мин. Скорость работы того или иного жесткого диска зависит от частоты его вращения, скорости перемещения системы головок и количества секторов на дорожке.

При нормальной работе жесткого диска головки чтения/записи не касаются (и не должны касаться!) дисков. Но при выключении питания и остановке дисков они опускаются на поверхность. Во время работы устройства между головкой и поверхностью вращающегося диска образуется очень малый воздушный зазор (воздушная подушка). Если в этот зазор попадет пылинка или произойдет сотрясение, головка “столкнется” с диском, вращающимся “на полном ходу”. Если удар будет достаточно сильным, произойдет поломка головки. Последствия этого могут быть разными - от потери нескольких байтов данных до выхода из строя всего накопителя. Поэтому в большинстве накопителей поверхности магнитных дисков легируют и покрывают специальными смазками, что позволяет устройствам выдерживать ежедневные “взлеты” и “приземления” головок, а также более серьезные потрясения.


Рис. 5. Дорожки и секторы накопителя на жестких дисках

Рис. 6. Цилиндр накопителя

на жестких дисках


Дорожки и секторы

Дорожка - это одно “кольцо” данных на одной стороне диска. Дорожка записи на диске слишком велика, чтобы использовать ее в качестве единицы хранения информации. Во многих накопителях ее емкость превышает 100 тыс. байт, и отводить такой блок для хранения небольшого файла крайне расточительно. Поэтому дорожки на диске разбивают на нумерованные отрезки, называемые секторами.

Количество секторов может быть разным в зависимости от плотности дорожек и типа накопителя. Например, дорожка гибких дисков может содержать от 8 до 36 секторов, а дорожка жесткого диска - от 380 до 700. Секторы, создаваемые с помощью стандартных программ форматирования, имеют емкость 512 байт, но не исключено, что в будущем эта величина изменится.

Нумерация секторов на дорожке начинается с единицы, в отличие от головок и цилиндров, отсчет которых ведется с нуля. Например, дискета HD (High Density) формата 3,5 дюйма (емкостью 1,44 Мбайт) содержит 80 цилиндров, пронумерованных от 0 до 79, в дисководе установлены две головки (с номерами 0 и 1), и каждая дорожка цилиндра разбита на 18 секторов (1–18).

При форматировании диска в начале и конце каждого сектора создаются дополнительные области для записи их номеров, а также прочей служебной информации, благодаря которой контроллер идентифицирует начало и конец сектора. Это позволяет отличать неформатированную и форматированную емкости диска. После форматирования емкость диска уменьшается, и с этим приходится мириться, поскольку для обеспечения нормальной работы накопителя некоторое пространство на диске должно быть зарезервировано для служебной информации.

В начале каждого сектора записывается его заголовок (или префикс - prefix portion), по которому определяется начало и номер сектора, а в конце - заключение (или суффикс - suffix portion), в котором находится контрольная сумма (checksum), необходимая для проверки целостности данных. В большинстве новых дисководов вместо заголовка используется так называемая запись No-ID, вмещающая в себя больший объем данных. Помимо указанных областей служебной информации, каждый сектор содержит область данных емкостью 512 байт.

Для наглядности представьте, что секторы - это страницы в книге. На каждой странице содержится текст, но им заполняется не все пространство страницы, так как у нее есть поля (верхнее, нижнее, правое и левое). На полях помещается служебная информация, например названия глав (в нашей аналогии это будет соответствовать номерам дорожек и цилиндров) и номера страниц (что соответствует номерам секторов). Области на диске, аналогичные полям на странице, создаются во время форматирования диска; тогда же в них записывается и служебная информация. Кроме того, во время форматирования диска области данных каждого сектора заполняются фиктивными значениями. Отформатировав диск, можно записывать информацию в области данных обычным образом. Информация, которая содержится в заголовках и заключениях сектора, не меняется во время обычных операций записи данных. Изменить ее можно, только переформатировав диск.

Форматирование дисков

Различают два вида форматирования диска:

ü физическое, или форматирование низкого уровня;

ü логическое, или форматирование высокого уровня.

При форматировании гибких дисков с помощью программы Explorer Windows 9x или команды DOS FORMAT выполняются обе операции, но для жестких дисков эти операции следует выполнять отдельно. Более того, для жесткого диска существует и третий этап, выполняемый между двумя указанными операциями форматирования, - разбивка диска на разделы. Создание разделов абсолютно необходимо в том случае, если вы предполагаете использовать на одном компьютере несколько операционных систем. Физическое форматирование всегда выполняется одинаково, независимо от свойств операционной системы и параметров форматирования высокого уровня (которые могут быть различными для разных операционных систем). Это позволяет совмещать несколько операционных систем на одном жестком диске.

При организации нескольких разделов на одном накопителе каждый из них может использоваться для работы под управлением своей операционной системы либо представлять отдельный том (volume), или логический диск (logical drive). Том, или логический диск, - это то, чему система присваивает буквенное обозначение.

Таким образом, форматирование жесткого диска выполняется в три этапа.

1. Форматирование низкого уровня.

2. Организация разделов на диске.

3. Форматирование высокого уровня.

ТИПЫ ВЗУ, (по критерию физической основы или технологии производства носителя)

Магнитные носители, -оптические, -флеш-память

Магнитные носители

Магнитные носители основаны на свойстве материалов находиться в двух состояниях: «не намагничено»-«намагничено», кодирующие 0 и 1. По поверхности носителя перемещается головка, которая может считывать состояние или изменять его. Запись данных на магнитный носитель осуществляется следующим образом. При изменении силы тока, проходящего через головку, происходит изменение напряженности динамического магнитного поля на поверхности магнитного носителя, и состояние ячейки меняется с «не намагничено» на «намагничено» или наоборот. Операция считывания происходит в обратном порядке. Намагниченные частички ферро магнитного покрытия являются причиной появления электрического тока. Электромагнитные сигналы, которые возникают при этом, усиливаются и анализируются, и делается вывод о значении 0 или 1.

Из-за контакта головки с поверхностью носителя через некоторое время носитель приходит в негодность.

Рассмотрим три типа магнитных носителей.

1. Накопители на жестких магнитных дисках (НЖМД; harddisk – жесткий диск) представляют собой несколько дисков с магнитным покрытием, нанизанные на шпиндель, в герметичном металлическом корпусе. При вращении диска происходит быстрый доступ головки к любой части диска.

2. Накопители на гибких магнитных дисках (НГМД; FDD – Floppy Disk Drive) предназначены для записи информации на переносные носители – дискеты.

3. Дисковые массивы RAID (Redundant Array of Inexpensive Disks – массив недорогих дисков с избыточностью) используются для хранения данных в суперкомпьютерах (мощных ЭВМ предназначенных для решения крупных вычислительных задач) и серверах (подключенных к сети ЭВМ, предоставляющих доступ к хранящимся в них данным). Массивы RAID – это несколько запоминающих устройств на жестких дисках, объединенные в один большой накопитель, обслуживаемый специальным RAID-контроллером.

Оптические носители

Оптические носители представляют собой компакт-диски диаметром. Оптические носители состоят из трех слоев:

1) поликарбонатная основа (внешняя сторона диска);

2) активный (регистрирующий) слой пластика с изменяемой фазой состояния;

3) тончайший отражающий слой (внутренняя сторона диска).

В центре компакт-диска находится круглое отверстие, надеваемое на шпиндель привода компакт-дисков.

Запись и считывание информации на компакт-диск осуществляется головкой, которая может испускать лазерный луч. Физический контакт между головкой и поверхностью диска отсутствует, что увеличивает срок службы компакт-диска. Фаза второго пластикового слоя, кристаллическая или аморфная, изменяется в зависимости от скорости остывания после разогрева поверхности лазерным лучом в процессе записи, выполняемой в приводе. При медленном остывании пластик переходит в кристаллическое состояние и информация стирается (записывается «0»); при быстром остывании элемент пластика переходит в аморфное состояние (записывается «1»).

1) ROM (Read Only Memory) – только для чтения; запись невозможна;

2) R (Recordable) – для однократной записи и многократного чтения; диск может быть однажды записан; записанную информацию изменить нельзя и она доступна только для чтения;

3) RW (ReWritable) – для многократной записи и чтения; информация на диске может быть многократно перезаписана. Эти типы дисков отличаются материалом, из которого изготовлен второй пластиковый слой.

Флэш-память

Флэш-память представляет собой микросхемы памяти, заключенные в пластиковый корпус, и предназначена для долговременного хранения информации с возможностью многократной перезаписи. Микросхемы флэш-памяти не имеют движущихся частей. При работе указатели в микросхеме перемещаются на начальный адрес блока, и затем байты данных передаются в последовательном порядке. При производстве микросхем флэш-памяти используются логические элементы NAND (И-НЕ). Количество циклов перезаписи флэш-памяти превышает 1 млн. В настоящее время размер флэш-памяти превышает 64 Гбайт (2011 г.), что позволило флэш-памяти вытеснить дискеты. Флэш-память подключается к порту USB.

"

Самым первым носителем магнитной записи, который использовался в аппаратах Поульсена на рубеже 19-20 вв., была стальная проволока диаметром до 1 мм. В начале 20 столетия для этих целей использовалась также стальная катаная лента. Тогда же (в 1906 г.) был выдан и первый патент на магнитный диск. Однако качественные характеристики всех этих носителей были весьма низкими. Достаточно сказать, что для производства 14-часовой магнитной записи докладов на Международном конгрессе в Копенгагене в 1908 г. потребовалось 2500 км или около 100 кг проволоки.

Лишь со второй половины 1920-х гг., когда была изобретена порошковая магнитная лента, началось широкомасштабное применение магнитной записи. Первоначально магнитный порошок наносился на бумажную подложку, затем - на ацетилцеллюлозу, пока не началось применение в качестве подложки высокопрочного материала полиэтилентерефталата (лавсана). Совершенствовалось также и качество магнитного порошка. Стали использоваться, в частности, порошки оксида железа с добавкой кобальта, металлические магнитные порошки железа и его сплавов, что позволило в несколько раз увеличить плотность записи.

В 1963 г. фирмой Philips была разработана так называемая кассетная запись, позволившая применять очень тонкие магнитные ленты. В компакт-кассетах максимальная толщина ленты составляет всего 20 мкм при ширине 3,81 мм. В конце 1970-х гг. появились микрокассеты размером 50 х 33 х 8 мм, а в середине 1980-х гг. - пикокассеты - втрое меньше микрокассет.

С начала 1960-х гг. широкое применение получили магнитные диски - прежде всего в запоминающих устройствах ЭВМ. Магнитный диск - это алюминиевый или пластмассовый диск диаметром от 30 до 350 мм, покрытый магнитным порошковым рабочим слоем толщиной в несколько микрон. В дисководе, как и в магнитофоне, информация записывается с помощью магнитной головки, только не вдоль ленты, а на концентрических магнитных дорожках, расположенных на поверхности вращающегося диска, как правило, с двух сторон. Магнитные диски бывают жёсткими и гибкими, сменными и встроенными в персональный компьютер. Их основными характеристиками являются: информационная ёмкость, время доступа к информации и скорость считывания подряд.

Алюминиевые магнитные диски - жёсткие (винчестерские) несъёмные диски - в ЭВМ конструктивно объединены в едином блоке с дисководом. Они компонуются в пакеты (стопки) от 4 до 16 штук. Запись данных на жёсткий магнитный диск, также как и чтение, осуществляется на скорости до 7200 оборотов в минуту. Ёмкость диска достигает свыше 9 Гбайт. Эти носители предназначены для постоянного хранения информации, которая используется при работе с компьютером (системное программное обеспечение, пакеты прикладных программ и др.).

Гибкие пластмассовые магнитные диски (флоппи-диски, от англ. floppy - свободно висящий) изготавливаются из гибкого пластика (лавсана) и размещаются по одному в специальных пластиковых кассетах. Кассета с флоппи-диском называется дискетой. Наиболее распространены дискеты с флоппи-дисками диаметром 3,5 и 5,25 дюйма. Ёмкость одной дискеты составляет обычно от 1,0 до 2,0 Мбайт. Однако уже разработана 3,5-дюймовая дискета ёмкостью 120 Мбайт. Кроме того, выпускаются дискеты, предназначенные для работы в условиях повышенной запылённости и влажности.

Широкое применение, прежде всего в банковских системах, нашли так называемые пластиковые карты, представляющие собой устройства для магнитного способа хранения информации и управления данными. Они бывают двух типов: простые и интеллектуальные. В простых картах имеется лишь магнитная память, позволяющая заносить данные и изменять их. В интеллектуальных картах, которые иногда называют смарт-картами (от англ. smart -умный), кроме памяти, встроен ещё и микропроцессор. Он даёт возможность производить необходимые расчёты и делает пластиковые карты многофункциональными.

Следует заметить, что, кроме магнитного, существуют и другие способы записи информации на карту: графическая запись, эмбоссирование (механическое выдавливание), штрих-кодирование, а с 1981 г. - также и лазерная запись (на специальную лазерную карточку, позволяющую хранить большой объём информации, но пока очень дорогую).

Для записи звука в цифровых диктофонах используются, в частности, миникарты, имеющие подобие дискет с объёмом памяти 2 или 4 Мбайт и обеспечивающие запись в течение 1 часа.

В настоящее время материальные носители магнитной записи классифицируют:

по геометрической форме и размерам (форма ленты, диска, карты и т.д.);

по внутреннему строению носителей (два или несколько слоёв различных материалов);

по способу магнитной записи (носители для продольной и перпендикулярной записи);

по виду записываемого сигнала (для прямой записи аналоговых сигналов, для модуляционной записи, для цифровой записи).

Технологии и материальные носители магнитной записи постоянно совершенствуются. В частности, наблюдается тенденция к увеличению плотности записи информации на магнитных дисках при уменьшении его размеров и снижении среднего времени доступа к информации.