На что влияет регулятор напряжения генератора. Как работает автомобильный генератор, схемы. Можно ли самостоятельно изготовить трехуровневый регулятор

Генераторная установка предназначена для питания потребителей автомобиля электрической энергией и заряда аккумуляторных батарей при работающем двигателе. В состав генераторных установок переменного тока современных автомобилей входит, как правило, генератор, реле-регулятор (регулятор напряжения) и коммутационная аппаратура.

На автомобилях семейства КамАЗ устанавливается генераторная установка 3122.3771 с встроенным интегральным регулятором напряжения (типу Я 120М) или генератор 6562.3701 с регулятором напряжения 2712.3702.

Генераторная установка 3122.3771 представляет собой трехфазный двенадцатиполюсной синхронный генератор переменного тока со встроенными выпрямительным блоком, помехоподавляющим конденсатором, щеткодержателем с регулятором напряжения.

Генератор 3122.3771 расположен в верхней передней части двигателя и приводится во вращение двумя клиновыми ремнями.

Технические характеристики генератора 3122.3771

Номинальное напряжение, В 28

Максимальный ток отдачи, А 80

Номинальная мощность, Вт 2100

Регулируемое напряжение: max, В 27-28

min, В 28,8-30,2

На генераторной установке имеются следующие выводы:

«+» - для соединения с аккумуляторной батареей и нагрузкой;

«Ш» или «В» - для соединения с выключателем стартера и приборов;

«W» или «~» - вывод фазы для соединения с тахометром и реле блокировки стартера;

«+D» или «Д» - вывод от дополнительных диодов для соединения с контрольной лампой.

Генераторная установка (рисунок 14.8) состоит из статора 2, ротора 5, крышки со стороны контактных колец 8 с выпрямительным блоком и щеткодержателем с регулятором напряжения 1, крышки со стороны привода 7, шкива 4, вентилятора 6.

1– щеткодержатель с регулятором напряжения; 2– статор; 3– подшипник со стороны привода; 4– шкив; 5– ротор; 6– вентилятор; 7– крышка со стороны привода; 8– крышка со стороны контактных колец; 9– стяжные винты

Рисунок 14.8 - Генераторная установка:

Статор состоит из сердечника и обмотки. Сердечник набран из пластин электротехнической стали, изолированных друг от друга лаком и соединенных сваркой по наружной поверхности пакета. Внутри сердечника равномерно расположены по окружности 36 пазов, предназначенных для размещения обмоток.

Обмотка статора трехфазная, соединенная «звездой». Выводы фазных обмоток крепятся к зажимам выпрямительного устройства. Вывод одной из фаз «W» служит для подключения реле блокировки стартера и тахометра.

Ротор является индуктором и состоит из вала, обмотки возбуждения, полюсных наконечников, контактных колец. Вал стальной, на его рифленой поверхности жестко, посредством прессовки, закреплены стальная втулка, полюсные наконечники и контактные кольца. Полюсные наконечники выполнены из мягкой стали, имеют по шесть заостренных клювов, которые образуют шесть пар полюсов.

Обмотка возбуждения намотана на стальную втулку. От втулки и полюсных наконечников обмотка изолирована полиэтиленовым каркасом и картонными шайбами. Концы обмотки возбуждения припаяны к контактным кольцам, расположенным на изоляционной втулке.

В крышке со стороны контактных колец установлены:

Выпрямительный блок с тремя дополнительными диодами, предназначенными для питания цепи возбуждения, служит для двухполупериодного выпрямления трехфазного тока;

Пластмассовый щеткодержатель с регулятором напряжения, закрепленный на крышке двумя винтами, переключатель посезонной регулировки. Уровень регулируемого напряжения генератора в положении переключателя "Л" (лето) должен находиться в пределах 27- 28 В, в положении "З" (зима) – 28,8- 30,2 В;

Помехоподавляющий конденсатор, установленный сверху на крышке;

Соединительная колодка с выводом от дополнительных диодов;

Вывод фазы.

В крышках генератора установлены закрытые шариковые подшипники вала ротора. Вентилятор и шкив устанавливаются на вал генератора и закрепляются гайкой с пружинной шайбой.

Генератор водостойкий, поэтому автомобиль может преодолевать брод без повреждений генератора. После выхода из воды работоспособность генератора должна сохраняться.

Принцип действия генератора

При включении выключателя приборов и стартера напряжение от аккумуляторной батареи подается на обмотку возбуждения (через щетки и контактные кольца), размещенную на вращающейся части генератора – роторе. Вокруг обмотки возбуждения создается магнитное поле, которое, проходя через полюсные наконечники, пересекает фазную обмотку статора. При вращении ротора будет вращаться и магнитное поле. Так как под каждой обмоткой статора поочередно проходят полюсы различной полярности, то ЭДС, индуцированная в обмотках статора, будет переменной, одинаковой частоты, но сдвинутой по фазе на 120°.

Выпрямительным блоком переменное напряжение преобразуется в постоянное, и, когда оно станет больше напряжения аккумуляторной батареи, генератор начнет питать потребители и заряжать батарею. Обмотка возбуждения при этом будет питаться от генератора через дополнительные диоды.

С увеличением частоты вращения ротора напряжение генератора может достигнуть опасного для приемников значения, поэтому генератор работает совместно с регулятором напряжения, поддерживающим напряжение в бортовой сети автомобиля в заданных пределах.

Принцип действия регулятора напряжения

Напряжение генератора определяется тремя факторами - величиной магнитного потока, создаваемой током обмотки возбуждения, частотой вращения ротора и силой тока, отдаваемой генератором в нагрузку. Чем выше частота вращения ротора и меньше нагрузка на генератор, тем выше напряжение генератора. Увеличение силы тока в обмотке возбуждения увеличивает магнитный поток и с ним напряжение генератора; снижение тока возбуждения уменьшает напряжение.

Регулятор напряжения стабилизирует величину вырабатываемого генератором напряжения изменением тока возбуждения. Если напряжение возрастает или уменьшается, регулятор соответственно уменьшает или увеличивает ток возбуждения и вводит напряжение в нужные пределы.

Регулятор содержит измерительный элемент, элемент сравнения и регулирующий элемент.

Измерительным элементом электронного регулятора напряжения является стабилитрон. Стабилитрон не пропускает через себя ток при напряжении ниже напряжения стабилизации и пробивается, т. е. начинает пропускать ток, если напряжение на нем превысит напряжение стабилизации. Ток через стабилитрон включает электронное реле, которое коммутирует цепь возбуждения таким образом, что ток в обмотке возбуждения изменяется в нужную сторону. Для согласования напряжения стабилизации существующих стабилитронов с напряжением вырабатываемым генератором применяется входной делитель напряжения. С входного делителя напряжение кратного уровня напряжению бортовой сети поступает на стабилитрон.

Работа генераторной установки автомобиля КамАЗ

На рисунке 14.9 изображена электрическая схема подключения генераторной установки в систему электрооборудования.

Рисунок 14.9 - Электрическая схема подключения генератора в систему электрооборудования

После включения выключателя приборов и стартера (ВПС) в первое положение замыкаются между собой клеммы «АМ» и «КЗ». Электрический ток от аккумуляторной батареи через предохранитель на силу тока 60 А, через нормально замкнутые контакты реле отключения обмотки возбуждения (РООВ) поступает на вывод «Ш» генератора, который связан с выводом «В» регулятора напряжения, что приводит к открытию силового транзистора VT2 (рисунок 14.10). Одновременно электрический ток поступает через предохранитель 8 А в обмотку реле выключателя аккумуляторных батарей («массы») (РВМ). Его контакты замыкаются, и электрический ток поступает по цепи первоначального возбуждения генератора: от аккумуляторной батареи через предохранитель на 60 А, через контрольную лампу разряда аккумуляторной батареи (КЛ), которая загорается, на вывод «+D» генератора и далее на обмотку возбуждения генератора, на клемму «Ш» регулятора напряжения и через открытый силовой транзистор VT2 (рисунок 14.10) на «массу». Таким образом, обмотка возбуждения генератора подключается к бортовой сети, и далее генератор работает, как описано выше (принцип действия генератора). После того как генератор начал вырабатывать электрическую энергию, напряжение на выводе «+D» генератора становится равно напряжению на выводе «+» генератора, следовательно, ток в цепи первоначального возбуждения генератора исчезает, и контрольная лампа гаснет, а обмотка возбуждения запитывается от блока дополнительных диодов. С увеличением частоты вращения ротора генератора в работу вступает регулятор напряжения.

Рисунок 14.10 - Электрическая схема интегрального регулятора по типу Я120М12И

РООВ (реле отключения обмотки возбуждения) предназначено для отключения обмотки возбуждения генератора при использовании электрофакельного устройства (ЭФУ). Причина здесь в том, что свечи ЭФУ рассчитаны на напряжение 19 В, поэтому после пуска двигателя и его работы с использованием ЭФУ, если генератор начнет вырабатывать электрическую энергию, свечи выйдут из строя.

Реле выключателя «массы» (РВМ) выполняет две функции. Первая – это после включения ВПС разорвать цепь кнопки выключателя аккумуляторных батарей, чтобы исключить возможность отключения батарей от бортовой сети при работающем двигателе (на рисунке 14.9 не показано). Вторая – включить цепь первоначального возбуждения генератора. Это сделано для того, чтобы разгрузить контакты ВПС, так как ток при первоначальном возбуждении генератора может достигать 5 А. На автомобиле КамАЗ выключатель приборов и стартера коммутирует только цепь обмотки РВМ и цепь управления регулятора напряжения, где ток составляет доли ампера.

Контрольная лампа выполняет диагностическую функцию. После включения ВПС она горит и сигнализирует об исправности цепи первоначального возбуждения генератора. После пуска двигателя она должна погаснуть, если этого не произошло, или лампа загорелась во время движения, – генератор по какой-либо причине не вырабатывает электрическую энергию.

Работа регулятора напряжения.

Как отмечалось выше, при включении ВПС в первое положение напряжение подаётся на вывод «В» регулятора напряжения (рисунок 14.10), и через резистор R4 ток поступает в базовую цепь транзистора VT2, что приводит к его открытию. При этом обмотка возбуждения генератора оказывается подключена к цепи питания через переход эмиттер-коллектор транзистора VT2. Напряжение к составному стабилитрону VD1 подводится от блока дополнительных диодов генератора через клемму «Д» регулятора напряжения и делитель напряжения, выполненный на резисторах R1, R2. Пока напряжение генератора невелико и на стабилитроне оно ниже напряжения стабилизации, стабилитрон закрыт, ток через него, а следовательно, и в базовой цепи транзистора VT1 не протекает, транзистор VT1 закрыт.

При возрастании напряжения на выводе «+» генератора оно возрастает на выходе с блока дополнительных диодов, а значит, и на делителе напряжения и стабилитроне VD1. При достижении этим напряжением величины напряжения стабилизации стабилитрон VD1 пробивается, ток через него начинает протекать в базовую цепь транзистора VT1, который открывается, и своим переходом эмиттер-коллектор закорачивает вывод базы транзистора VT2 на «массу». Транзистор VT2 закрывается, разрывая цепь питания обмотки возбуждения. Ток возбуждения спадает, уменьшается напряжение генератора, закрывается стабилитрон VD1 и транзистор VT1, открывается транзистор VT2, обмотка возбуждения вновь включается в цепь питания, напряжение генератора возрастает и т. д., процесс повторяется.

Таким образом, регулировка напряжения генератора регулятором осуществляется дискретно – путем изменения относительного времени включения обмотки возбуждения в цепь питания. Если частота вращения ротора генератора возросла или нагрузка его уменьшилась, то время включения обмотки возбуждения уменьшается, если частота вращения уменьшилась или нагрузка возросла – увеличивается.

Диод VD2 при закрытии транзистора VT2 предотвращает опасные всплески напряжения, возникающие из-за отключения цепи обмотки возбуждения, которая обладает значительной индуктивностью. В этом случае ток обмотки возбуждения может замыкаться через этот диод, и опасных всплесков напряжения не происходит. Поэтому диод VD2 называется гасящим. Сопротивление R3 является сопротивлением обратной связи. При открытии транзистора VT2 оно оказывается подключенным параллельно сопротивлению R2 делителя напряжения. При этом напряжение на стабилитроне VD2 уменьшается, что ускоряет переключение схемы регулятора и повышает частоту этого переключения. Конденсатор С1 является фильтром, защищающим регулятор от влияния импульсов напряжения на его входе.

На автомобиле Урал устанавливаются генераторы Г-288Е или 1702.3771 совместно с регулятором напряжения 2712.3702.

Состав генераторной установки автомобиля Урал аналогичен КамАЗ, отличается тем, что регулятор напряжения размещен отдельно от генератора, и в зарядную цепь установлен амперметр.

Техническая характеристика генератора Г 288Е:

Номинальное напряжение, В - 28

Ток нагрузки максимальный/номинальный, А - 40/36

Максимальная мощность, Вт - 1100

Генератор имеет аналогичную конструкцию, за исключением того, что регулятор напряжения выполнен отдельно, для уменьшения пульсации выпрямленного напряжения между шинами выпрямительного блока встроен конденсатор и к выводу «~» подключаются тахометр и реле блокировки стартера.

Бесконтактный регулятор напряжения с тремя уровнями настройки представляет собой электронный прибор на полупроводниковых элементах. Напряжение настраивается переключателем 14 (рисунок 14.11), расположенным на передней крышке регулятора. Положение рычажка переключателя соответствует напряжениям: максимальное, среднее и минимальное. Маркировка уровней напряжения расположена на передней крышке регулятора.

Напряжение, поддерживаемое регулятором соответсвует 26,5 - 27,9 В – на минимальном уровне, 28,1 - 28,7 В на среднем уровне, 28,7 - 30,1 В – на максимальном уровне настройки.

Регулирование уровней напряжения вырабатываемого генератором осуществляется для предотвращения недозаряда и перезаряда аккумуляторных батарей вне зависимости от климатических условий. Если температура окружающей среды установилась 0°С и ниже, необходимо перевести рычажок переключателя в положение «МАКС». При температуре 0°С и выше – в положение «МИН» для предотвращения выкипания электролита. При недозаряде батарей или при выкипании электролита рычажок установить в положение «СР».

1 – вентилятор; 2 – шкив; 3, 7 – шарикоподшипники; 4 – ротор; 5 – щетки; 6 – крышка щеткодержателя; 8 –- кольца контактные; 9 – блок выпрямительный; 10 – крышка со стороны контактных колец; 11 – статор; 12 – крышка со стороны привода; 13 – корпус; 14 – переключатель; 15, 16, 17 – клеммы

Рисунок 14.11 - Генератор Г 288Е и регулятор напряжения 2712.3702

Реле-регулятор (рисунок 14.12) выполнен на кремниевых транзисторах и работает с генератором Г 288Е. Регулятор имеет клеммы «+» и «Ш», которыми подключается к бортовой сети. Роль минусовой клеммы выполняет винт, к которому крепится минусовой провод.

Рисунок 14.12 - Электрическая принципиальная схема генераторной установки автомобиля Урал 4320-31

По схемному решению регулятор напряжения аналогичен рассмотренному ранее. Элемент сравнения – стабилитроны VD2, VD5, которые управляют усилительным транзистором VT2, силовой транзистор- VT1, делитель напряжения включает в себя R3, R6 –R8, резистор обратной связи R2, гасящий диод- VD1.

При напряжении генератора меньше регулируемого стабилитроны VD2, VD5 закрыты, закрыт и транзистор VT2, так как его база через резистор R5 соединена с минусом. На базу транзистора VT1 через резистор R1, диоды VD3 и VD4 подается положительный потенциал, вследствие чего транзистор VT1, открываясь, пропускает ток в обмотку возбуждения генератора. Напряжение генератора увеличивается.

При напряжении генератора выше регулируемого, стабилитрон VD2, VD5 и транзистор VT2 открываются. При этом напряжение на базе транзистора VT1 резко уменьшается, вследствие чего транзистор закрывается, выключая ток обмотки возбуждения генератора. Напряжение генератора понижается до тех пор, пока не закроется стабилитрон и не появится ток возбуждения через транзистор VT1. Рассмотренный процесс повторяется, поддерживая величину напряжения генератора постоянной независимо от частоты вращения коленчатого вала двигателя.

Генератор 6562.3701 автомобиля КамАЗ совместно с регулятором напряжения 2712.3702 работает как и генераторная установка на автомобиле Урал.

На автомобиле УАЗ-3151 устанавливается генератор Г 250П2. Работает совместно с регулятором напряжения 2702.3702 (рисунок 14.13).

Рисунок 14.13 – Электрическая принципиальная схема генераторной установки автомобиля УАЗ-3151

Генераторная установка автомобиля УАЗ работает аналогично генераторной установке Урал 4320-31. Отличается тем, что обмотка статора генератора выполнена по схеме «звезда», в выпрямительном блоке отсутствует конденсатор и в регуляторе напряжения установлен один стабилитрон

Правила эксплуатации системы электроснабжения

При стоянке автомобиля необходимо отключить аккумуляторные батареи от системы электрооборудования.

Запрещается отключать аккумуляторные батареи выключателем батарей при работающем двигателе.

Запрещается нажимать кнопку включения электрофакельного устройства при работающем двигателе во избежание выхода из строя регулятора напряжения.

При проведении электросварочных работ на автомобиле аккумуляторные батареи должны быть отключены и сняты провода с выводов «+» и «Ш» («В») генератора. Провод массы сварочного аппарата должен быть подсоединен в непосредственной близости от сварного шва.

Важно заметить что цепь обмотки возбуждения включает транзистор регулятора напряжения который позволяет изменять образуемый катушкой магнитный поток с целью обеспечения стабильности выходного напряжения генератора. Напряжение настройки регулятора напряжения выбирается исходя из величины номинального напряжения сети автомобиля и имеющихся потребителей электроэнергии. Превышение напряжения настройки регулятора над величиной номинального напряжения сети автомобиля выбрано для компенсации падения напряжения в проводах чтобы для нормальной...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Автомобильная генератор ная установка

Л е к ц и я

Автомобильная генераторная установка представляет собой синхронную электрическую машину – собственно генератор со встроенным полупроводниковым выпрямителем и регулятором напряжения. Она предназначена для питания потребителей электроэнергии в автомобиле и заряда аккумуляторной батареи.

Синхронной называется электрическая машина, частота вращения которой пропорциональна частоте переменного тока в ее обмотке статора.

1.Принцип работы генератора

Принцип работы генератора заключается в следующем.

При включенном зажигании и работающем двигателе через обмотку возбуждения протекает ток и ротор представляет собой вращающуюся внутри статора систему из 12 магнитных полюсов чередующейся полярности. Важно заметить, что цепь обмотки возбуждения включает транзистор регулятора напряжения, который позволяет изменять образуемый катушкой магнитный поток с целью обеспечения стабильности выходного напряжения генератора. То есть, чтобы при увеличении частоты вращения ротора не увеличивалось выходное напряжение, достаточно убавлять соответствующим образом ток в катушке возбуждения.

Обмотки статора соединены в «звезду» (иногда в «треугольник), образуя типовую трехфазную систему, в которой наводится ЭДС. Обратите внимание, что в автомобиле, ЭО которого рассчитано на постоянное напряжение 12 В, генератор является генератором переменного тока. Постоянным он становится после выпрямления диодным мостом. Из-за больших токов (десятки ампер) диоды выпрямительного моста сильно нагреваются и для защиты от повреждения они прикреплены к радиатору из теплопроводящего алюминиевого сплава и обдуваются вентилятором.

Кроме 6 диодов выпрямителя в генераторе есть еще три дополнительных диода, с которых снимается напряжение для питания обмотки возбуждения в установившемся режиме (в начале используется АКБ). Они работают на малых токах и в радиаторах не нуждаются.

На выводе этих диодов при увеличении частоты вращения ротора генератора нарастает напряжение и разность потенциалов между ним и плюсовым выводом от силовых диодов, который подключен непосредственно к плюсу батареи, уменьшается. Напряжение на контрольной лампе стремится к нулю, и она гаснет. Этим самым контролируется работа генератора.

Обороты ротора, при которых происходит самовозбуждение генератора, оговариваются в его технических условиях (для генератора автомобиля 2110 эти обороты составляют 1400 об/мин). С целью снижения оборотов самовозбуждения увеличивают проходящий по обмотке ротора ток путем включения параллельно контрольной лампе резистора 50 Ом.

Напряжение настройки регулятора напряжения выбирается исходя из величины номинального напряжения сети автомобиля и имеющихся потребителей электроэнергии. Его величина для двенадцативольтовой системы колеблется от 14,1 В до 14,75 В. Превышение напряжения настройки регулятора над величиной номинального напряжения сети автомобиля выбрано для компенсации падения напряжения в проводах, чтобы для нормальной работы напряжение у потребителей электроэнергии не снижалось ниже 12 В.

Основной характеристикой автомобильных генераторов является токоскоростная характеристика, представляющая собой зависимость выпрямленного тока на выходе генератора от скорости вращения ротора. Исходя из определения токоскоростной характеристики, при данной скорости вращения генератор не может дать больший ток, чем ограничено токоскоростной характеристикой. Следовательно, автомобильный генератор работает в режиме короткого замыкания, и величина тока ограничивается активным и индуктивным сопротивлением статорной обмотки генератора.

Чем выше частота вращения генератора, тем выше индуктивное сопротивление его обмотки статора. Поэтому скорость нарастания тока, отдаваемого генератором, с ростом частоты вращения ротора и, соответственно, индуктивного сопротивления обмотки статора уменьшается и генератор приобретает свойство самоограничения силы тока. Таким образом, увеличение частоты вращения генератора не приведет к сгоранию обмотки статора и выходу его из строя.

  1. Конструкция автомобильных генераторов

Современный трехфазный генератор с когтеобразными полюсами состоит из следующих узлов:

  • статора, выполненного в виде пакета листовой стали, с вложенной в его пазы трехфазной обмоткой;
  • ротора с когтеобразными полюсами, обмоткой возбуждения и контактными кольцами;
  • выпрямительного блока;
  • щеткодержателя футлярного типа с навесным регулятором напряжения;
  • крышек со стороны привода и со стороны контактных колец;
  • шкива.

Статор генератора состоит из пакета статора, набранного из стальных пластин, толщиной 0,5 мм или 1,0 мм каждая. Пластины соединены между собой по наружной поверхности сваркой. Внутренняя поверхность пакета имеет трапецеидальные пазы, равномерно расположенные по окружности, в которые уложена трехфазная катушечная обмотка. Каждая фаза состоит из шести непрерывно намотанных катушек. Статор является якорем синхронного генератора.

Когтеобразные полюсные половины изготавливают обычно методом холодной штамповки из полосовой стали толщиной около 12 мм с последующим отжигом для улучшения магнитных свойств, так как при штамповке меняется структура внутренних слоев стали, что ухудшает кривую намагничивания материала. Втулка и полюсные половины закрепляются посредством прессовой посадки на валу ротора. Обмотка возбуждения намотана рядами на пластмассовый каркас и закреплена на втулке. Выводы обмотки возбуждения припаяны к медным контактным кольцам, изолированным друг от друга. На современных генераторах (компакт–генераторы) к полюсным половинам ротора с двух сторон привариваются центробежные вентиляторы, которые всасывают воздух с торцов генератора и выбрасывают его через радиальные отверстия в крышках, охлаждая лобовые части обмотки статора и выпрямительный блок с регулятором напряжения.

Так как ротор генератора вращается с большой скоростью (до 18000 об/мин), для снижения вибрации осуществляют динамическую балансировку ротора. Для этого у ротора после сборки проверяют на специальном оборудовании динамически (при вращении) дисбаланс, т.е. насколько отклоняется центр тяжести ротора от его оси. Допустимый дисбаланс ротора 0,02 г м (0,02 грамм на метр). Для получения необходимого дисбаланса производится балансировка ротора, т.е путем высверливания отверстий в полюсных половинах убирается лишний материал для приближения центра тяжести ротора к его оси.

Установка генератора на автомобиле производится путем крепления его к нижнему кронштейну и планке, закрепленных на блоке ДВС. Натяжение ремня привода генератора осуществляется перемещением генератора вокруг оси нижнего кронштейна и затяжки гайки крепления на планке. Привод осуществляется клиновым ремнем; передаточное отношение от 2 до 3. Натяжение ремня контролируется величиной прогиба ремня, под действием прилагаемого к ремню усилия.

В вариантах для легковых автомобилей номинальное напряжение 14 В, а для грузовиков и автобусов в большинстве случаев – 28 В.

Внешние факторы, влияющие на генератор:

  • значительная вибрация с ускорением от 50g до 80 g;
  • высокие, вблизи двигателя от 100 °С до 120 °С температуры.
  • коррозия под действием воды, грязи, масел, соли;
  • значительные нагрузки из–за неравномерности частоты вращения коленчатого вала ДВС.
  1. Токоскоростная характеристика генератора

Основная характеристика автомобильного трехфазного генератора это токоскоростная характеристика при U = const. На ней отмечаются три характерные точки:

1. Точка включения генератор, работая на холостом ходу, именно при этой частоте вращения достигает номинального напряжения и начинает отдавать ток.

2. Точка максимального тока генератор работает практически в режиме короткого замыкания и отдает свою максимальную мощность. Максимальный ток зависит исключительно от реактивного сопротивления.

3. Расчетная точка. Степень использования генератора максимальна.

Для вентильных (с выпрямительным блоком) генераторов с самоограничением понятие номинальной мощности не имеет смысла. Поэтому расчетные (номинальные) значения мощности, тока, частоты вращения устанавливают по режиму, соответствующему максимальному значению отношения выпрямленной мощности к частоте вращения.

Токоскоростная характеристика с достаточной степенью точности аппроксимируется уравнением

при, тогда расчетные значения можно определить, если из начала координат провести касательную к токоскоростной характеристике. Точка касания определяет расчетные величины, .

  1. Принцип действия регулятора напряжения

Регулятор напряжения поддерживает напряжение в бортовой сети автомобиля в заданных пределах во всех режимах работы при изменении частоты вращения ротора генератора, электрической нагрузки, температуры окружающей среды. Кроме того, он может выполнять дополнительные функции – защищать элементы генератора от аварийных режимов и перегрузки, автоматически включать в бортовую сеть цепь обмотки возбуждения или систему сигнализации аварийной работы генератора.

Все автомобильные регуляторы напряжения работают по одному принципу. Напряжение генератора определяется тремя факторами – частотой вращения ротора, силой тока, отдаваемой генератором в нагрузку, и величиной магнитного потока, создаваемого током обмотки возбуждения. Чем выше частота вращения ротора и меньше нагрузка на генератор, тем выше напряжение генератора. Увеличение тока в обмотке возбуждения увеличивает магнитный поток и с ним напряжение генератора; снижение тока возбуждения уменьшает напряжение. Все регуляторы напряжения стабилизируют напряжение изменением тока возбуждения. Если напряжение возрастает или уменьшается, регулятор, соответственно, уменьшает или увеличивает ток возбуждения и вводит напряжение в нужные пределы.

Блок– схема регулятора напряжения представлена на рисунке.

1 – регулятор; 2 – генератор; 3 – элемент сравнения;

4 – регулирующий элемент; 5 – измерительный элемент

Блок–схема регулятора напряжения

Регулятор 1 содержит измерительный элемент 5, элемент сравнения 3 и регулирующий элемент 4. Измерительный элемент воспринимает напряжение генератора 2 и преобразует его в сигнал, который в элементе сравнения сравнивается с эталонным значением напряжения.

Если величина напряжения отличается от эталонной величины, на выходе измерительного элемента появляется сигнал, который активирует регулирующий элемент, изменяющий ток в обмотке возбуждения так, чтобы напряжение генератора вернулось в заданные пределы.

Таким образом , измерительная цепь регулятора напряжения обязательно должна быть подсоединена к плюсовому зажиму генератора или аккумуляторной батареи. Если функции регулятора расширены, то и число подсоединений его в схему растет, например, для температурной компенсации регулируемого напряжения он подключен к датчику температуры, встроенному в аккумуляторной батареи.

Чувствительным элементом электронных регуляторов напряжения является входной делитель напряжения. С входного делителя напряжение поступает на элемент сравнения, где роль эталонной величины играет обычно напряжение стабилизации стабилитрона. Стабилитрон (диод Зенера) не пропускает через себя ток при напряжении ниже напряжения стабилизации и «пробивается», т.е. начинает пропускать через себя ток, если напряжение на нем превысит напряжение стабилизации. Напряжение же на стабилитроне остается при этом практически неизменным. Ток через стабилитрон включает электронное реле (транзисторный ключ), которое коммутирует цепь возбуждения таким образом, что ток в обмотке возбуждения изменяется в нужную сторону. В вибрационных и контактно–транзисторных регуляторах чувствительный элемент представлен в виде обмотки электромагнитного реле, напряжение к которой, впрочем, тоже может подводиться через входной делитель, а эталонная величина – это сила натяжения пружины, противодействующей силе притяжения электромагнита. Коммутацию в цепи обмотки возбуждения осуществляют контакты реле или, в контактно–транзисторном регуляторе, полупроводниковая схема, управляемая этими контактами. Особенностью автомобильных регуляторов напряжения является то, что они осуществляют дискретное регулирование напряжения путем включения и выключения в цепь питания обмотки возбуждения (в транзисторных регуляторах) или последовательно с обмоткой дополнительного резистора (в вибрационных и контактно–транзисторных регуляторах), при этом меняется относительная продолжительность включения обмотки или дополнительного резистора.

В настоящее время применяются электронные транзисторные регуляторы, удобно рассмотреть принцип работы регулятора напряжения на примере простейшей схемы.

Регулятор 2 на схеме работает в комплекте с генератором 1, имеющим дополнительный выпрямитель обмотки возбуждения. Чтобы понять работу схемы, следует вспомнить, что, как было показано выше, стабилитрон не пропускает через себя ток при напряжениях ниже величины напряжения стабилизации. При достижении напряжением этой величины стабилитрон пробивается и по нему начинает протекать ток.

Транзисторы же пропускают ток между коллектором и эмиттером, т.е. открыты, если в цепи база–эмиттер ток протекает, и не пропускают этого тока, т.е. закрыты , если базовый ток прерывается.

Напряжение к стабилитрону VD1 подводится от выхода генератора Д через делитель напряжения на резисторах R1, R2. Пока напряжение генератора невелико, и на стабилитроне оно ниже напряжения стабилизации, стабилитрон закрыт, ток через него, а, следовательно, и в базовой цепи транзистора VT1 не протекает, транзистор VT1 закрыт. В этом случае ток через резистор R6 от вывода Д поступает в базовую цепь транзистора VT2, он открывается, через его переход эмиттер–коллектор начинает протекать ток в базе транзистора VT3, который открывается тоже. При этом обмотка возбуждения генератора оказывается через переход эмиттер–коллектор VT3 подключена к цепи питания. Соединение транзисторов VT2, VT3, при котором их коллекторные выводы объединены, а питание базовой цепи одного транзистора производится от эмиттера другого, называется схемой Дарлингтона. При таком соединении оба транзистора могут рассматриваться как один составной транзистор с большим коэффициентом усиления. Обычно такой транзистор и выполняется на одном кристалле кремния. Если напряжение генератора возросло, например, из–за увеличения частоты вращения его ротора, то возрастает и напряжение на стабилитроне VD1.

При достижении этим напряжением величины напряжения стабилизации стабилитрон VD1 пробивается, ток через него начинает поступать в базовую цепь транзистора VT1, который открывается и своим переходом эмиттер–коллектор закорачивает вывод базы составного транзистора VT2, VT3 на «массу». Составной транзистор закрывается, разрывая цепь питания обмотки возбуждения. Ток возбуждения спадает, уменьшается напряжение генератора, закрываются стабилитрон VD1, транзистор VT1, открывается составной транзистор VT2, VT3, обмотка возбуждения вновь включается в цепь питания, напряжение генератора возрастает и т.д., процесс повторяется.

1 – генератор; 2 – регулятор

Схема электронного транзисторного регулятора напряжения

Таким образом регулировка напряжения генератора регулятором осуществляется дискретно через изменение относительного времени включения обмотки возбуждения цепи питания. При этом ток в обмотке возбуждения изменяется. Если частота вращения генератора возросла или нагрузка его уменьшилась, время включения обмотки уменьшается, если частота вращения уменьшилась или нагрузка возросла – увеличивается.

В схеме регулятора имеются элементы, характерные для схем всех применяющихся на автомобилях регуляторов напряжения. Диод VD2 при закрытии составного транзистора VT2, VT3 предотвращает опасные всплески напряжения, возникающие из–за обрыва цепи обмотки возбуждения со значительной индуктивностью.

В этом случае ток обмотки возбуждения может замыкаться через этот диод и опасных всплесков напряжения не происходит. Поэтому диод VD2 носит название гасящего. Сопротивление R3 является сопротивлением жесткой обратной связи. При открытии составного транзистора VT2, VT3 оно оказывается подключенным параллельно сопротивлению R2 делителя напряжения. При этом напряжение на стабилитроне VD1 резко уменьшается, что ускоряет переключение схемы регулятора и повышает частоту этого переключения. Это благотворно сказывается на качестве напряжения генераторной установки. Конденсатор С1 является своеобразным фильтром, защищающим регулятор от влияния импульсов напряжения на его входе.

Вообще конденсаторы в схеме регулятора либо предотвращают переход этой схемы в колебательный режим и возможность влияния посторонних высокочастотных помех на работу регулятора, либо ускоряют переключения транзисторов.

В последнем случае конденсатор, заряжаясь в один момент времени, разряжается на базовую цепь транзистора в другой момент, ускоряя броском разрядного тока переключение транзистора и, следовательно, снижая потери мощности в нем и его нагрев.

Введение резистора R в генераторную установку способствует расширению диагностических способностей лампы HL. При наличии этого резистора, если при работающем двигателе автомобиля произойдет обрыв цепи обмотки возбуждения, то лампа HL загорится. Недостатком такого решения является то, что по резистору R всегда протекает ток, нагревающий резистор, из–за чего мощность его должна быть достаточной для исключения перегрева резистора. Постоянный нагрев резистора R также приводит к нежелательному нагреву находящихся рядом элементов конструкции панели приборов.

Конструкция регулятора напряжения

t вкл и t выкл – соответственно время включения и выключения обмотки возбуждения генератора; n 1 и n 2 – частоты вращения ротора генератора, причем n 2 больше n 1 ;

I В1 и I В2 – среднее значение тока в обмотке возбуждения

Изменение силы тока в обмотке возбуждения I в по времени t

В рассмотренной схеме регулятора напряжения, как и во всех регуляторах аналогичного типа, частота переключений в цепи обмотки возбуждения изменяется по мере изменения режима работы генератора. Нижний предел этой частоты составляет 25–50 Гц.

В настоящее время описанная выше схема регулятора напряжения применяется на автомобилях разработанных ранее и заменяется другой разновидностью схем электронных регуляторов, в которых частота переключения строго задана. Регуляторы такого типа оборудованы широтно–импульсным модулятором (ШИМ), который и обеспечивает заданную частоту переключения. Применение ШИМ снижает влияние на работу регулятора внешних воздействий, например, уровня пульсаций выпрямленного напряжения и т.п.

При этом выпрямительный блок генераторных установок не имеет дополнительных диодов для питания обмотки возбуждения и предотвращения разряда аккумуляторной батареи при неработающем двигателе автомобиля. Для работы схемы в этом случае регулятор такого типа подключается к одной из фаз обмотки статора генератора. В регуляторах такого типа, ШИМ при неработающем двигателе переводит выходной транзистор в колебательный режим, при котором ток в обмотке возбуждения невелик и составляет доли ампера. Поэтому генератор во время запуска двигателя не возбуждается, что позволяет снизить момент сопротивления прокрутки коленчатого вала двигателя и облегчить его запуск. После запуска двигателя сигнал с вывода фазы генератора переводит схему регулятора в нормальный режим работы.

Схема регулятора осуществляет в этом случае и управление лампой контроля работоспособного состояния генераторной установки.

Наличие дополнительных функций регулятора кроме обычной функции регулирования напряжения (задержка возбуждения генератора при запуске, управление контрольной лампой или светодиодом и т.д.) позволяет называть его многофункциональным.

Другие похожие работы, которые могут вас заинтересовать.вшм>

5532. Установка гидроочистки У-1.732 33.57 KB
Автоматизация технологического процесса – это совокупность методов и средств предназначенная для реализации системы или систем позволяющих осуществлять управление производственным процессом без непосредственного участия человека но под его контролем. Одной из важнейших задач автоматизации технологических процессов является автоматическое регулирование имеющее целью поддержание постоянства стабилизацию заданного значения регулируемых переменных или их изменение по заданному во времени...
4583. Установка электроцентробежных насосов 114.22 KB
Установки погружных центробежных насосов предназначены для откачки из нефтяных скважин, в том числе и наклонных пластовой жидкости, содержащей нефть, воду и газ, и механические примеси. В зависимости от количества различных компонентов, содержащихся в откачиваемой жидкости, насосы установок имеют исполнение обычное и повышенной корозионно-износостойкости.
4902. Судовая энергетическая установка (СЭУ) 300.7 KB
Допускаемое напряжение на изгиб для чугунных поршней. Напряжение изгиба возникающее в момент действия силы. Напряжение среза. Допускаемое напряжение изгиба и среза: Допускаемое напряжение изгиба для легированной стали: Допускаемое напряжение среза.
19230. Индукционная закалочная установка 2.47 MB
Приведены результаты исследований и дано краткое описание наиболее существенных изобретений. Приведены тепловой и электрические расчеты. Разработаны принципиальная электрическая схема и схема управления сигнализации и защиты установки. Особое внимание в дипломном проекте обращено на потери электроэнергии при закалке заготовок в индукторах предназначенных для закалки заготовок большего диаметра.
3518. Установка и настройка службы SAMBA 442.51 KB
Служба каталогов в контексте компьютерных сетей - программный комплекс, позволяющий администратору работать с упорядоченным по ряду признаков массивом информации о сетевых ресурсах
12450. Установка вентиляторов. Борьба с шумом и вибрацией 308.25 KB
Борьба с шумом и вибрацией При установке вентиляторов необходимо выполнить определённые требования общие для разных типов этих машин. При установке вентиляторов других конструктивных исполнений очень важно тщательно центрировать геометрические оси валов вентилятора и электродвигателя если они соединяются с помощью муфт. При наличии ременной передачи необходимо тщательно контролировать установку шкивов вентилятора и двигателя в одной плоскости степень натяжения ремней их целостность. Всасывающие и выхлопные отверстия вентиляторов не...
11992. Установка плазменного уничтожения опасных медицинских отходов 17.39 KB
В установке реализован метод высокотемпературного плазменного окисления отходов с соблюдением следующих современных принципов организации процесса: двухстадийное окисление в печи при температуре 10001200 С и в камере дожигания при температуре 12001300 С со временем пребывания дымовых газов не менее 2 с; обязательная закалка быстрое охлаждение дымовых газов; многоступенчатая очистка дымовых газов от летучей золы паров тяжелых металлов кислых газов и при необходимости диоксинов и фуранов; автоматизированный контроль режимных...
5615. Трехкорпусная выпарная установка для концентрирования водного раствора 89.34 KB
Предварительный подогрев раствора повышает интенсивность кипения в выпарном аппарате. Вторичный пар образующийся при концентрировании раствора в первом корпусе направляется в качестве греющего во второй корпус. Аналогично третий корпус обогревается вторичным паром второго и в нем производится концентрирование раствора. Самопроизвольный переток раствора и вторичного пара в следующие корпуса возможен благодаря общему перепаду давлений возникающему в результате создания вакуума конденсацией вторичного пара последнего корпуса в...
1031. АВТОМАТИЗРОВАННАЯ УСТАНОВКА МАГНИТОПОРОШКОВОГО КОНТРОЛЯ ОСИ КОЛЕСНОЙ ПАРЫ 6.05 MB
Ось колесной пары, магнитопорошковый вид неразрушающего контроля, седлообразный соленоид, автоматизированная установка магнитопорошкового контроля оси колёсной пары вагона, программируемый логический контроллер.
19857. Буровая установка глубокого бурения на Заполярном месторождени 658.96 KB
В комплект буровой установки входят: вышка для подвешивания талевой системы и размещения бурильных труб оборудование для спуска и подъема инструмента оборудование для подачи и вращения инструмента насосы для прокачивания промывочной жидкости силовой привод механизмы для приготовления и очитки промывочной жидкости механизмы для автоматизации и механизации спускоподъемных операций СПО контрольно-измерительные приборы и вспомогательные устройства. ОАО Уралмаш выпускает комплектные буровые установки и наборы бурового оборудования...

Схемы генераторных установок


Генератор Г221 с регулятором напряжения РР380. Генераторная установка обеспечивает питание потребителей с номинальным напряжением 12В. Примененные в заводских схемах цифровые обозначения электрических выводов, отличающиеся от общепринятых, приведены на рисунке в скобках.

Для контроля заряда аккумуляторной батареи в схему включено реле RC702 и контрольная лампа Н, свечение которой при работе двигателя указывает на неисправность генераторной установки. Обмотка реле РС702 включена между нулевой точкой обмотки статора и положительным выводом генератора, т. е. питается от одной фазы генератора.

При неработающем двигателе и включенном выключателе зажигания S контрольная лампа светится. Она питается от батареи через замкнутые контакты реле РС702. Ток в обмотку реле от батареи проходить не будет, так как этому препятствует выпрямитель генератора.

При работающем генераторе контакты реле размыкаются, разрывая цепь питания контрольной лампы. Если лампа продолжает гореть при работе генератора, это свидетельствует о неисправности генераторной установки или реле РС702.

Регулятор напряжения РР380 двухступенчатый вибрационный. Он имеет две пары контактов К1 и К2. Контакты К1 включены между выводами « + » и Ш. Контакты К2 второй ступени включены между выводом Ш и корпусом.

Основная обмотка 00 регулятора включена между корпусом и через резистор RT выводом « + ». Добавочный резистор Ra составной - из двух параллельно соединенных резисторов. Последовательно резистору Я* включен дроссель Др. Вся цепочка включена параллельно контактам К1. Дроссель служит для уменьшения скорости нарастания тока через контакты К2 второй ступени, облегчая таким образом условия работы контактов.

Температурная компенсация регулятора осуществляется посредством подвески якорька на биметаллической пластине БП и включением в цепь основной обмотки регулятора резистора Ят-

Регулятор имеет два вывода: Ш (67) и « + » (15), которые соединены с соответствующими выводами генератора Г221.

При неработающем генераторе обмотка возбуждения через контакты выключателя зажигания питается от аккумуляторной батареи. Путь тока возбуждения: положительный вывод батареи-вывод « + » (15) регулятора - стойка неподвижного контакта первой ступени - контакты К1 и корпус реле - вывод Ш (67) регулятора - вывод Ш (67) генератора - обмотка возбуждения - корпус автомобиля - «-» батареи.

При напряжении генератора большем напряжения батареи обмотка возбуждения питается от генератора. Пока напряжение генератора меньше регулируемого значения, контакты К1 замкнуты, так как магнитный поток, создаваемый обмоткой 00 регулятора, недостаточен для притяжения якорька к сердечнику. Путь тока возбуждения через регу лятор тот же, что и при питании от батареи.

С увеличением частоты вращения ротора напряжение генератора возрастает. Когда оно достигает регулируемой величины, сила притяжения якорька к сердечнику станет достаточной для размыкания контактов К1. При разомкнутых контактах К1 ток возбуждения от вывода « + » (15) к выводу LL1 (67) регулятора проходит через дроссель Др и резистор. В результате ток возбуждения и, следовательно, напряжение генератора снизятся, и контакты К1 вновь замкнутся.

Рис. 1. Схема генератора Г221 с регулятором напряжения РР380

Работа первой ступени аналогична работе обычного регулятора напряжения. Отличие заключается в том, что величина сопротивления резистора Ra и дросселя Др, включаемых в цепь обмотки возбуждения при разомкнутых контактах К1, в несколько раз меньше, чем у одноступенчатых регуляторов. Таким образом обеспечивается уменьшение напряжения на контактах, т. е. улучшаются условия их работы.

Если при разомкнутых контактах К1 частота вращения ротора продолжает возрастать, будет возрастать и напряжение генератора. При этом увеличится ток обмотки 00 регулятора и сила притяжения якорька к сердечнику, что приведет к замыканию контактов К2. В результате вывод Ш (67) регулятора окажется замкнутым на массу, ток возбуждения снизится до нуля и резко уменьшится напряжение генератора. При уменьшении напряжения

уменьшится ток в обмотке 00 регулятора и под действием пружины контакты К2 разомкнутся. Затем процесс будет повторяться. При работе на второй ступени регулируемое напряжение немного повышается.

Таким образом, регулирование напряжения генератора на всем диапазоне изменения частоты вращения ротора обеспечивается попеременной работой первой и второй ступеней регулятора РР380.

Генератор 32.3701 с регулятором напряжения 201.3702 (рис. 2). Генераторная установка предназначена для бортовых сетей с номинальным напряжением 12 В.

Работает генераторная установка следующим образом. При включении выключателя зажигания S напряжение аккумуляторной батареи подается к выводам «4-» и «-» регулятора напряжения. Так как входной делитель, состоящий из резисторов Rl, R2, R3, R4, рассчитан таким образом, что напряжения аккумуляторной батареи недостаточно для отпирания транзистора VT1 (КТ315Б), указанный транзистор и транзистор VT3 (КТ3107В) находятся в закрытом состоянии, а транзисторы VT4, VT5 (составной транзистор КТ837Х) открываются током, протекающим по цепи: «) » - эмиттер-база VT5 - эмиттер-база VT4 - резистор R14 - резистор R13-резистор R12 - «-». Поскольку разность потенциалов на обкладках конденсатора С2 близка к нулю, тока в его цепи нет, что обусловливает закрытое состояние транзистора защиты VT2. В этом случае по цепи обмотки возбуждения генератора протекает ток, ограничиваемый только активным сопротивлением обмотки и падением напряжения между коллектором и эмиттером насыщенного транзистора VT5. При пуске двигателя и увеличении частоты вращения ротора уровень напряжения на выводах « + », «-» генератора начинает возрастать. Так как выводы « + ». «-» генератора присоединены к соответствующим выводам регулятора, соответственно повышается напряжение, приложенное к входному делителю Rl, R2, R3, R4. При достижении уровня, достаточного для отпирания транзистора VT1, последний открывается и соответственно открывается транзистор VT3. Напряжение между коллектором и эмиттером транзистора VT3 резко уменьшается, что вызывает запирание транзисторов VT4, VT5. При этом из-за резкого увеличения падения напряжения на участке коллектор-эмиттер транзистора VT5 по цепи конденсатор С2 - резистор R9 - эмиттер-база транзистора VT2 (КТ361Б) протекает ток, который открывает транзистор защиты VT2 и обеспечивает форсированное отпирание управляющего транзистора VT3 и запирание транзисторов VT4, VT5. Ток в цепи обмотки возбуждения уменьшается и соответственно уменьшается напряжение, вырабатываемое генераторной установкой. При снижении регулируемого напряжения до уровня, при котором запирается транзистор VT1, происходит запирание управляющего транзистора VT3 и отпирание транзисторов VT4, VT5. Транзистор защиты VT2 запирается, а конденсатор С2 разряжается по цепи: диод VD2 - ограничительный резистор R1 - коллектор-эмиттер силового транзистора VT5. В этом случае к базе управляющего транзистора VT3 через резистор R10 прикладывается положительный потенциал, форсирующий процесс отпирания силового транзистора VT5. Далее процесс регулирования протекает аналогично описанному выше, в результате чего регулируемое напряженйе автоматически поддерживается на заданном уровне.

Рис. 2. Схема генератора 32.3701 с регулятором напряжения 201.3702

Для снижения влияния пульсаций напряжения генераторной установки на уровень регулируемого напряжения между точкой соединения резисторов R3, R4 и эмиттером измерительного транзистора VT1 включен конденсатор С1.

Резистор R6 предназначен для повышения частоты переключений пегулятопа.

В режиме замыкания обмотки возбуждения на корпус (вывод Ш соединен с выводом М) транзисторы VT2, VT3, VT4, VT5 образуют схему релаксационного генератора, работающего в автоколебательном режиме. Процесс возникновения автоколебаний состоит в следующем. При открытом силовом транзисторе VT5 и замкнутой обмотке возбуждения в первоначальный момент времени ток в цепи транзистора VT5 ограничивается индуктивным сопротивлением присоединительных проводов. В дальнейшем транзистор VT5 переходит в линейный режим усиления, в связи с чем напряжение между коллектором и эмиттером начинает возрастать, а в цепи конденсатор С2 - резистор R9 - переход база-эмиттер транзистора VT2 возникает ток, открывающий транзисторы VT2, VT3. Силовой транзистор VT5 при этом закрывается. В таком состоянии схема находится в течение времени, обусловленного в основном постоянной времени цепи, состоящей из конденсатора С2 и резистора R9. При завершении процесса заряда конденсатора С2 транзисторы VT2, VT3 закрываются, а силовой транзистор VT5 открывается. При этом конденсатор С2 быстро разряжается через диод VD2, резистор R11 и открытый транзистор VT5. Далее процесс протекает аналогично вышеописанному, в результате чего в схеме регулятора возникают устойчивые автоколебания. В рассмотренном режиме через силовой транзистор VT5 протекает импульсный ток, среднее значение которого при выборе сопротивления резистора R9 значительно большим сопротивления резистора R11 пренебрежимо мало. После устранения короткого замыкания обмотки возбуждения регулятор включается в работу автоматически.

Основное назначение элементов схемы: VT1 - измерительный элемент; VT2 - транзистор защиты от замыкания вывода Ш на «-»; VT3 - управляющий элемент; VT4, VT5 - регулирующий элемент, выполненный в виде составного транзистора по схеме «Дарлингтон»; VD1 - опорный элемент; VD2 - диод схемы защиты; VD3 - гасящий диод; VD4 - диод, обеспечивающий защиту транзисторов регулятора от кратковременных импульсов напряжения обратной полярности; С/ - фильтрующий элемент; С2 - элемент цепи обратной связи; Rl-R4 - элементы входного делителя напряжения; R5 - резистор, обеспечивающий минимальный ток стабилитрона; R6 - резистор цепи отрицательной обратной связи; R7 - резистор, ограничивающий ток коллектора транзистора VT1; R8 - резистор цепи положительной обратной связи; R9-резистор, ограничивающий ток базы транзистора VT2; R10 - резистор базовой цепи транзистора VT3; R11 - резистор, ограничивающий ток диода VD2; R12-коллекторная нагрузка транзисторов VT2, VT3; R13 - резистор, обеспечивающий режим работы транзистора VT2; R14 - ограничительный резистор; R15 - резистор, обеспечивающий стабильность работы транзистора VT5.

Регулятор напряжения 201.3702 предназначен также для работы с генераторами Г284 и Г250. Точно такую же схему имеют регуляторы напряжения 22.3702 и 221.3702; отличаются они уровнем регулируемого напряжения и конструкцией выводов. У регулятора напряжения 201.3702 выводы штекерные, у регуляторов 22.3702 и 221.3702 - под винтовое соединение.

На многих современных автомобилях применяются генераторные установки со встроенными регуляторами напряжения. Схемы встроенных регуляторов напряжения подобны схемам обычных бесконтактных регуляторов. А так как интегральные регуляторы являются изделиями неремонтируемыми, не имеет смысла рассматривать особенности их схемного решения. Рассмотрим в целом схемы генераторных установок с учетом лишь тех особенностей схем интегральных регуляторов, которые влияют на схему в целом.

Генератор Г286А с интегральным регулятором напряжения Я112А (рис. 3). Интегральный регулятор Я112А применяется и с другими генераторами, предназначенными для питания потребителей с номинальным напряжением 12 В.

Питание обмотки возбуждения через регулятор Я112А осуществляется следующим образом. При замкнутых контактах выключателя зажигания S ток возбуждения протекает по цепи: вывод « + » аккумуляторной батареи - амперметр - контакты выключателя S - вывод В генераторной установки - вывод В регулятора напряжения - дублирующий вывод В регулятора напряжения - обмотка возбуждения - вывод Ш регулятора напряжения - переход коллектор-эмиттер выходного транзистора VT- корпус генератора и автомобиля - вывод «-» аккумуляторной батареи.

Рис. 3. Схема генератора Г286А с интегральным регулятором напряжения Я112А

Оба вывода В регулятора напряжения соединены проводником, по которому протекает ток возбуждения и от которого осуществляется питание схемы управления выходным транзистором VT (на рисунке схема управления не показана, а условно пунктиром показана связь базы транзистора с выводом В и гасящий диод VD). Таким образом, в регуляторе используется схема с объединенными входом и выходом, которая вместе с обмоткой возбуждения подключается на выводы « + » генератора и аккумуляторной батареи. Для контроля работы генератора и состояния зарядной цепи в схеме установлен амперметр.

На некоторых генераторных установках с интегральными регуляторами Я112А между выводами « + » и корпусом генератора устанавливается конденсатор С, назначение которого - уменьшение пульсаций напряжения в схеме электрооборудования и улучшение радиоприема.

Генератор Г222 с интегральным регулятором напряжения Я112В (рис. 2.16). Является генераторной установкой, предназначенной для питания потребителей с номинальным напряжением 12 В.

Отличительные особенности генераторной установки следующие. Во-первых, интегральный регулятор Я112В имеет разделенные вход и выход. Управление силовым транзистором VT осуществляется от отдельного вывода Б регулятора, который является выводом генераторной установки и соединен через контакты выключателя S с положительными выводами генератора и аккумуляторной батареи. Вывод В регулятора, через который подается питание на обмотку возбуждения, непосредственно соединен с положительным выводом генератора.

Рис. 4 Схема генератора Г222 с интегральным регулятором напряжения Я112В

Рис. 5. Схема генератора Г273 с интегральным регулятором напряжения Я120М

При такой схеме значительно уменьшена величина тока в цепи управления регулятором, что уменьшает колебания падения напряжения. В конечном счете это приводит к повышению стабильности регулируемого напряжения генераторной установки. Разгружаются также контакты выключателя S.

Для контроля состояния генераторной установки и в целом работы системы электроснабжения в схеме установлены уже известное реле РС702 с контрольной лампой Н и вольтметр.

Генератор Г273 (Г273А) с интегральным регулятором напряжения Я120М. Генераторная установка предназначена для питания потребителей с номинальным напряжением 24В.

В отличие от рассмотренных схем в генераторной установке применена принципиально отличающаяся схема включения цепи питания обмотки возбуждения и регулятора напряжения. Обмотка возбуждения и выходной транзистор VT вместе с гасящим диодом VD 1 выключены между нулевой точкой обмотки статора и корпусом. Питание обмотки возбуждения от аккумуляторной батареи при замкнутых контактах выключателя и неработающем двигателе осуществляется через подпиточный резистор R„oa. Ток при этом не превышает 0,3 А. При разомкнутых контактах выключателя S выходной транзистор закрыт и ток в обмотку возбуждения не поступает.

Применение такой схемы питания обмотки возбуждения позволило применить такой же ротор, как у 14-вольтовых генераторов.

Кроме того, такая схема включения обеспечивает:
— уменьшение перенапряжения на выходном транзисторе, когда он находится в закрытом состоянии, за счет уменьшения более чем в 2 раза напряжения питания;
— устранение разряда аккумуляторной батареи при неработающем двигателе и включенном выключателе S полным током возбуждения;
— исключение прохождения полного тока возбуждения через выходной транзистор регулятора напряжения при неработающем двигателе и включенном выключателе S;
— уменьшение тока через контакты выключателя S в цепи управления регулятором напряжения, что способствует повышению стабильности регулируемого напряжения генераторной установки.

Кроме того, регулятор напряжения Я120М позволяет осуществлять регулирование напряжения на двух уровнях. Для этой цели в делитель напряжения, состоящий из резисторов Rl, R2, включен резистор R3. Второй конец резистора R3 соединен с выводом Р регулятора, который посредством выключателя Snp (выключатель посезонной регулировки) может подключаться к корпусу генератора. При разомкнутых контактах выключателя Snp соотношение между величинами сопротивлений резисторов R1, R2 таково, что рабочий пробой стабилитрона VD2 будет обеспечивать регулируемое напряжение 27,2 - 27,8 В. При замыкании контактов выключателя Snp параллельно резистору R2 включается резистор R3. При этом напряжение на резисторе R1 уменьшается, что обеспечивает пробой стабилитрона при большом входном напряжении. Регулируемое напряжение при этом обеспечивается в пределах 29 - 30В.

Генератор 37.3701 с интегральным регулятором напряжения 17.3702 (рис. 6). Генераторная установка предназначена для питания потребителей с номинальным напряжением 12 В.

Основной отличительной особенностью схемы генераторной установки является наличие встроенных в силовой выпрямитель трех дополнительных диодов VDa, которые при работающем двигателе вместе с минусовой группой силовых диодов VD образуют мостовую схему полного выпрямителя, от которой питается обмотка возбуждения.

Рис. 6. Схема генератора с интегральным регулятором напряжения 37.3701 17.3702

Питание обмотки возбуждения при замкнутых контактах выключателя S и неработающем двигателе осуществляется через параллельно включенные два дополнительных резистора Rr сопротивлением по 100 Ом каждый и лампу контроля исправности генераторной установки Н мощностью 1,2 Вт. Ток, протекающий по этой цепи, не превышает 0,4 А. Таким образом обеспечивается предварительное возбуждение генератора, позволяющее получить необходимую начальную частоту вращения ротора.

Интегральный регулятор выполнен с разделенными входом и выходом. Обмотка питается через вывод В. Схема управления регулятором постоянно подключена выводом Б к положительным выводам генераторной установки и аккумуляторной батареи. Поэтому при разомкнутых контактах выключателя S и неработающем двигателе происходит непрерывный разряд аккумуляторной батареи на входную цепь регулятора напряжения, что является недостатком схемы. Ток потребления входной цепи составляет 10 мА, что при длительных стоянках автомобиля (более месяца) может вызвать значительный разряд аккумуляторной батареи. Однако при такой схеме получены и значительные преимущества.

Например, регулирование напряжения осуществляется непосредственно на выводах « + » и «-», что исключает влияние падения напряжения на контактах выключателя S на стабильность напряжения в системе электроснабжения.

Контрольная лампа Н, включенная в цепь между аккумуляторной батареей и выводом дополнительных диодов, должна при замкнутых контактах выключателя S гореть при неработающем и гаснуть при работающем двигателе.

Если при неработающем двигателе лампа не горит, то: неисправна контрольная лампа; неисправен генератор (обрыв в цепи возбуждения); неисправен регулятор напряжения (разрыв выходной цепи); имеются разрывы в соединительных цепях между генератором и регулятором напряжения, а также во внешних цепях лампы.

Если при работающем двигателе контрольная лампа продолжает гореть, это может быть вызвано:
— обрывом приводного ремня вентилятора или его большим проскальзыванием;
—- неисправностями генераторной установки.

В случае чрезмерно большого напряжения генераторной установки лампа не горит и не сигнализирует о перезаряде аккумуляторной батареи. Поэтому в схему установлен вольтметр V, позволяющий, помимо лампы, контролировать напряжение генератора.

К атегория: - Электрооборудование автомобилей

Напряжение генераторов постоянного и переменного тока зависит от частоты вращения ротора, значения отдаваемого тока, магнит­ного потока возбуждения, сопротивления обмотки якоря (у гене­ратора постоянного тока) и полного сопротивления обмотки ста­тора (у генераторов переменного тока).

Если учитывать (при грубом приближении) только основные фак­торы, то можно считать, что

Таким образом, для обеспечения постоянства напряжения гене­ратора при изменении частоты вращения ротора необходимо обратно пропорционально частоте изменять магнитный поток. Так как магнитный поток определяется силой тока возбуждения, регулирование напряжения осуществляется периодическим включе­нием в цепь возбуждения генератора и отключением из этой цепи добавочного резистора с постоянным сопротивлением. В настоя­щее время применяются вибрационные и полупроводниковые регу­ляторы напряжения.

Вибрационный регулятор напряжения . Вибрационный регулятор (рис. 18,а) имеет добавочный резистор Rд, который включается по­следовательно с обмоткой возбуждения ОВ. При замыкании контак­тов 4, один из которых неподвижен, а другой расположен на якорьке 3, добавочный резистор замкнут накоротко. Основная обмот­ка ОО регулятора, намотанная на сердечнике 5, включена на пол­ное напряжение генератора. Пружина 2 оттягивает якорек вверх, удерживая контакты в замкнутом состоянии. При этом обмотка возбуждения ОВ через контакты, якорек и ярмо 1 подключена, минуя добавочный резистор.

При неработающем генераторе в основной обмотке 00 регуля­тора тока нет и контакты под действием пружины замкнуты. С увеличением частоты вращения сила тока возбуждения генерато­ра и его напряжение растут. При этом увеличивается сила тока основной обмотки 00 регулятора и намагничивание сердечника. Пока напряжение генератора меньше установленной величины, силы магнитного притяжения якорька к сердечнику недостаточно для преодоления силы натяжения пружины и контакты регуля­тора остаются замкнутыми, а ток в обмотку возбуждения про­ходит, минуя добавочный резистор.

При дальнейшем увеличении напряжения генератора наступает такой момент, когда сила магнитного притяжения якорька к сердечнику преодолевает силу натяжения пружины и контакты регулятора размыкаются. Вследствие этого в цепь обмотки возбуж­дения включается добавочный резистор, и напряжение генератора резко падает.

Уменьшение напряжения приводит к уменьшению тока в обмотке регулятора напряжения и, следовательно, силы притяжения якорька к сердечнику. В результате контакты регулятора вновь замыкаются, а затем при увеличении напряжения генератора размыкаются.

Описанный процесс периодически повторяется. В результате этого возникают пульсации напряжения (рис. 18, б). Среднее значение напряжения Uср, измеряемое вольтметром, определяет регули­руемое напряжение генератора. С увеличением частоты враще­ния увеличивается время разомкнутого состояния t р и уменьшается время замкнутого состояния t 3 . Это приводит к уменьшению тока возбуждения I B (рис. 19).

Напряжение генератора, поддерживаемое регулятором, зависит от силы натяжения пружины. Изменением силы натяжения пружины осуществляется регулировка напряжения генераторной установки.

Уменьшение пульсаций напряжения происходит следующим обра­зом. Пульсации напряжения генератора зависят от частоты колебаний якорька регулятора. Чтобы пульсации напряжения не оказывали влияния на работу потребителей, якорек регулятора должен колебаться с частотой не менее 30 Гц. Кроме того, с увеличением частоты колебаний якорька уменьшается износ контактов.

Частоту колебаний повышают применением специальных уско­ряющих обмоток, которые наматывают на сердечник регулятора, или ускоряющих резисторов. Наиболее часто применяют схему вибрационного регулятора напряжения с ускоряющим резистором (рис. 20). Здесь основная обмотка 00 регулятора подключается к генератору через ускоряющий резистор Rу, который включен последовательно с резистором Rд. Резистор Rу также является добавочным в цепи обмотки возбуждения генератора. Таким обра­зом, напряжение на обмотке регулятора равно разности между напряжением генератора и падением напряжения в ускоряющем резисторе.

Ускоряющее действие резистора Rу заключается в следующем.При замкнутых контактах регулятора через ускоряющий резистор походит ток только обмотки регулятора, величина которого составляет доли ампера. Напряжение, приложенное к обмотке регулятора, почти равно напряжению генератора, так как падение напряжения в ускоряющем резисторе очень незначительно.

При размыкании контактов ток возбуждения генератора, который вследствие явления самоиндукции не может изменяться скачком, в первый момент сохраняет свою величину и направление. Ток возбуждения проходит по ускоряющему резистору, что приво­дит к резкому увеличению падения напряжения на нем и резкому уменьшению напряжения на обмотке регулятора. Скачкообразное уменьшение напряжения в ос­новной обмотке 00 регулятора в момент размыкания контактов резко уменьшает в ней ток, а следовательно, и силу притя­жения якоря регулятора к се­рдечнику. Благодаря этому кон­такты быстро замыкаются вновь. В результате частота колебаний якоря увеличива­ется до 150-250 Гц и, сле­довательно, уменьшается пуль­сация напряжения. При при­менении ускоряющих устройств возникает отрицательное явление, связанное с увеличением напряжения генератора при увеличении частоты вращения ротора. Возрастание напряжения с увеличением частоты вращения ротора предотвращается при помощи выравнивающих обмоток или выравнивающих резисторов.

Для стабилизации напряжения наибольшее распространение получили схемы с выравнивающими обмотками (рис. 21).

Выравнивающую обмотку ВО включают в цепь через контакты регулятора последовательно с обмоткой возбуждения ОВ генератора. Ее наматывают на сердечник таким образом, чтобы ее магнитный по­ток противодействовал магнитному потоку основной обмотки 00 ре­гулятора. Магнитный поток, создаваемый выравнивающей обмоткой, значительно меньше магнитного потока, создаваемого основной обмоткой регулятора.

При увеличении частоты вращения ротора в результате увеличе­ния времени разомкнутого состояния контактов уменьшается сила то­ка не только в основной, но и в выравнивающей обмотке. Поэ­тому уменьшение магнитного потока, создаваемого основной об­моткой, сопровождается таким же по величине уменьшением магнит­ного потока, создаваемого выравнивающей обмоткой, и результи­рующий магнитный поток почти не изменяется. В результате размыкание контактов регулятора происходит независимо от частоты вращения ротора при напряжении, установленном регулировкой.

Рабочая температура регулятора меняется в значительных преде­лах (от -50 до +125 °С). Сопротивление основной обмотки регулятора напряжения, выполняемой из меди, изменяется от тем­пературы (возрастает на 40% при нагреве обмотки на 100 °С). Поэ­тому при повышении температуры основной обмотки уменьшается ток в ней и, следовательно, магнитный поток. В результате регулятор начинает работать при напряжении, большем того, на которое он от­регулирован.

Температурная компенсация осуществляется следующим обра­зом.

Для уменьшения влияния температуры на работу вибрацион­ного регулятора последовательно основной обмотке регулятора, которую выполняют с меньшим сопротивлением, включают доба­вочный резистор из нихрома или константана. Сопротивление этих материалов практически не* меняется от температуры. В резуль­тате суммарное изменение сопротивления цепи основной обмотки регулятора от температуры в несколько раз уменьшится. Таким образом, возрастание регулируемого напряжения составит пример­но 10% при нагреве на 100 °С. В ряде регуляторов роль термокомпенсационного резистора выполняет ускоряющий резистор.

Для более полной термокомпенсации вместе с резистором применяют биметаллическую пластину, на которой подвешивают якорек регулятора. Биметаллическая пластина имеет два слоя. Материалы слоев обладают резко отличающимися коэффициентами теплового расширения.

Биметаллическую пластину приклепывают к якорьку и закреп­ляют на ярме регулятора. При этом слой материала с малым коэф­фициентом температурного расширения обращен к сердечнику. При повышении температуры пластина изгибается и создает усилие, направленное против усилия пружины, и таким образом способствует вступлению регулятора в работу при меньшем напря­жении. Таким образом и обеспечивается температурная компенсация.

Для термокомпенсации применяют также магнитные шунты. Маг­нитный шунт МШ (см. рис. 26) представляет собой пластину из железоникелевого или иного термомагнитного сплава с магнитным сопротивлением, увеличивающимся при повышении температуры. Пластина закреплена в верхней части регулятора между сердечником и ярмом параллельно якорьку.

При повышении температуры магнитное сопротивление шунта возрастает. При низких температурах магнитное сопротивление шунта мало, и часть магнитного потока сердечника, минуя якорек, замыкается через магнитный шунт. Таким образом компенсируется изменение магнитного потока, возникающее в резуль­тате изменения сопротивления основной обмотки регулятора от температуры. Применение магнитного шунта исключает необходи­мость в термокомпенсационном резисторе и биметаллической пла­стине.

Недостатки вибрационных регуляторов состоят в следующем. Вибрирующие контакты и пружины являются основным недо­статком вибрационных регуляторов, затрудняющим их настройку и повышающим чувствительность к вибрации. В результате изменения характеристик пружин вибрационные устройства подвер­жены разрегулировкам.

Обычный вибрационный регулятор напряжения может приме­няться с генераторами, у которых сила тока возбуждения не более 1,5-1,8 А. При больших значениях силы тока значительно сокра­щается срок службы контактов.

Особенно сказываются недостатки вибрационных регуляторов при работе с генераторными установками переменного тока, у которых сила тока возбуждения значительно больше, чем у гене­раторов постоянного тока. Чтобы получить возможность использо­вать вибрационный регулятор с мощными генераторами, применя­ют следующие способы. Часто используют не один, а два регуля­тора напряжения. Для этого обмотку возбуждения генератора раз­деляют на две одинаковые по своим параметрам и параллельно включенные ветви. Сила тока каждой ветви регулируется своим регулятором. При этом сила тока, разрываемого контактами, уменьшается вдвое.

Для уменьшения силы тока разрыва применяют также двухсту­пенчатое регулирование напряжения. Двухступенчатый регулятор напряжения имеет две пары контактов и добавочный резистор с меньшим сопротивлением. Подробно работа двухступенчатого регу­лятора рассмотрена на конкретном примере. Недостатки вибрационных регуляторов вызвали в последние годы применение с мощными генераторами полупроводниковых регуляторов напряже­ния.

Полупроводниковые регуляторы напряжения . В полупроводнико­вых регуляторах сила тока возбуждения регулируется при помощи транзисторов, эмиттерноколлекторная цепь которого включена по­следовательно с обмоткой возбуждения генератора.

Транзистор работает аналогично контактам вибрационного регу­лятора. При повышении напряжения генератора выше заданного уровня транзистор переключается в закрытое состояние (разомкну­тые контакты). При понижении уровня регулируемого напряжения транзистор переключается в открытое состояние (замкнутые кон­такты). В состоянии «открыт» сопротивление транзистора составляет доли ома, в состоянии «закрыт» - бесконечно большое значение. Полупроводниковые регуляторы напряжения могут выполняться контактно-транзисторными и бесконтактными.

Контактно-транзисторный регулятор (рис. 22) содержит в своей схеме вибрационное реле, управляющее транзистором Т.

Работает регулятор следующим образом. До момента достиже­ния генератором регулируемого значения напряжения U r силы тока обмотки вибрационного реле недостаточно, чтобы контакты замкну­лись. При этом транзистор открыт, так как через него проте­кает ток базы по цепи: «плюс» генератора, переход эмиттер-база, резистор R б, корпус генератора.

Через обмотку возбуждения ОВ в этом случае протекает полный ток возбуждения, и напряжение генератора возрастает с возрастанием частоты вращения ротора. Полное отпирание тран­зистора осуществляется подбором сопротивления резистора R б.

При достижении напряжением генератора регулируемого значе­ния ток в основной обмотке OO реле достигает значения, при котором реле срабатывает. При замкнутых контактах потенциалы базы и эмиттера становятся равными, так как контакты шунтиру­ют переход эмиттер - база. Вследствие этого ток базы становится равным нулю, что приводит к запиранию транзистора.

В результате запирания транзистора ток возбуждения, под­держиваемый э.д.с. самоиндукции обмотки возбуждения, протекая через гасящий диод Д r , уменьшается. При этом уменьшается напряжение генератора U r , контакты реле размыкаются, и тран­зистор открывается. Затем процесс повторяется.

Гасящий контур, выполняемый обычно в виде диода Д r , явля­ется обязательным элементом любого транзисторного регулятора. Если бы его не было, э.д.с. самоиндукции обмотки возбуждения, возникающая в момент закрытого состояния транзистора и достига­ющая несколько сотен вольт, могла бы вызвать пробой коллектор­ного перехода и отказ транзистора в работе.

В контактно-транзисторном регуляторе напряжения через контакты протекает незначительный ток, благодаря чему увеличива­ется срок их службы. Однако надежность работы регулятора по-прежнему определяется усталостной прочностью и возможной разрегулировкой пружины. Указанный недостаток исключен в бес­контактных схемах регулирования напряжения.

Бесконтактный регулятор напряжения (рис. 23) содержит тран­зистор T1, который выполняет функции контактов в контактно транзисторном регуляторе. Управление транзистором T1 осуществля­ется резисторами R1, R2 и стабилитроном Д1.

При напряжении генератора меньше регулируемого значения напряжение на резисторе R1, включенном параллельно стабилитро­ну Д1, меньше значения, соответствующего пробою стабилитрона. Стабилитрон при этом не проводит ток. следовательно, ток базы транзистора T1 равен нулю. Транзистор T1 при этом закрыт, что соответствует разомкнутому состоянию контактов, а транзистор Т2 открыт.

При достижении генератором уровня напряжения, соответ­ствующего регулируемому значению, напряжение на резисторе R1 повышается до значения, при котором стабилитрон пробивается, т. е. его сопротивление в обратном направлении резко уменьша­ется. В результате возникает ток базы транзистора T1, проте­кающий по цепи: «плюс» генератора, переход эмиттер - база тран­зистора T1, стабилитрон Д1, резистор R2, «минус» генератора. Транзистор T1 при этом открывается, что соответствует замкнутому состоянию контактов, транзистор Т2 запирается, а ток возбуждения и напряжение генератора уменьшаются. Вследствие этого напряже­ние на стабилитроне снижается ниже напряжения стабилизации, и он запирается, прерывая ток базы транзистора T1. Транзистор T1 запи­рается, а транзистор Т2 переключается в открытое состояние и т. д. Соотношение сопротивлений резисторов R1 и R2 определяет уровень регулируемого напряжения.

Схемы бесконтактных регуляторов, применяемых на практике, имеют ряд дополнительных элементов, улучшающих рабочие ха­рактеристики. Назначение дополнительных элементов рассмотрено на примерах схем конкретных регуляторов.


Похожая информация.


Генератор - один из главных элементов электрооборудования автомобиля, обеспечивающий одновременное питание потребителей и подзаряд аккумуляторной батареи.

Принцип действия устройства построен на превращении механической энергии, которая поступает от мотора, в напряжение.

В комплексе с регулятором напряжения узел называется генераторной установкой.

В современных автомобилях предусмотрен агрегат переменного тока, в полной мере удовлетворяющий всем заявленным требованиям.

Устройство генератора

Элементы источника переменного тока спрятаны в одном корпусе, который также является основой для статорной обмотки.

В процессе изготовления кожуха применяются легкие сплавы (чаще всего алюминия и дюрали), а для охлаждения предусмотрены отверстия, обеспечивающие своевременный отвод тепла от обмотки.

В передней и задней части кожуха предусмотрены подшипники, к которым и крепится ротор - главный элемент источника питания.

В кожухе помещаются почти все элементы устройства. При этом сам корпус состоит из двух крышек, расположенных с левой и с правой стороны - около приводного вала и контрольных колец соответственно.

Две крышки объединяются между собой с помощью специальных болтов, изготовленных из алюминиевого сплава. Этот металл отличается незначительной массой и способностью рассеивать тепло.

Не менее важную роль играет щеточный узел, передающий напряжение на контактные кольца и обеспечивающий работу узла.

Изделие состоит из пары графитных щеток, двух пружин и щеткодержателя.

Также уделим внимание элементам, расположенным внутри кожуха:


Какие требования предъявляются к автомобильному генератору?

К генераторной установке автомобиля выдвигается ряд требований:

  • Напряжение на выходе устройства и, соответственно, в бортовой сети должно поддерживаться в определенном диапазоне, вне зависимости от нагрузки или частоты вращения коленвала.
  • Выходные параметры должны иметь такие показатели, чтобы в любом из режимов работы машины АКБ получала достаточное напряжение заряда.

При этом каждый автовладелец должен особое внимание уделять уровню и стабильности напряжения на выходе. Это требование вызвано тем, что аккумулятор чувствителен к подобным изменениям.

Например, в случае снижения напряжения ниже нормы АКБ не заряжается до необходимого уровня. В итоге возможны проблемы в процессе пуска мотора.

В обратной ситуации, когда установка выдает повышенное напряжение, аккумулятор перезаряжается и быстрее ломается.

Принцип работы автомобильного генератора, особенности схемы

Принцип действия генераторного узла построен на эффекте электромагнитной индукции.

В случае прохождения магнитного потока через катушку и его изменения, на выводах появляется и меняется напряжение (в зависимости от скорости изменения потока). Аналогичным образом работает и обратный процесс.

Так, для получения магнитного потока требуется подать на катушку напряжение.

Выходит, что для создания переменного напряжения требуются две составляющие:

  • Катушка (именно с нее снимается напряжение).
  • Источник магнитного поля.

Не менее важным элементом, как отмечалось выше, является ротор, выступающий в роли источника магнитного поля.

У полюсной системы узла присутствует остаточный магнитный поток (даже при отсутствии тока в обмотке).

Этот параметр небольшой, поэтому способен вызвать самовозбуждение только на повышенных оборотах. По этой причине по обмотке ротора пропускают сначала небольшой ток, обеспечивающий намагничивание устройства.

Упомянутая выше цепочка подразумевает прохождение тока от АКБ через лампочку контроля.

Главный параметр здесь - сила тока, которая быть в пределах нормы. Если ток будет завышенным, аккумулятор быстро разрядится, а если заниженным - возрастет риск возбуждения генератора на ХХ мотора (холостых оборотах).

С учетом этих параметров подбирается и мощность лампочки, которая должна составлять 2-3 Вт.

Как только напряжение достигает требуемого параметра, лампочка гаснет, а обмотки возбуждения питаются от самого автомобильного генератора. При этом источник питания переходит в режим самовозбуждения.

Снятие напряжения производится со статорной обмотки, которая выполнена в трехфазном исполнении.

Узел состоит 3-х индивидуальных (фазных) обмоток, намотанных по определенному принципу на магнитопроводе.

Токи и напряжения в обмотках смещены между собой на 120 градусов. При этом сами обмотки могут собираться в двух вариантах - «звездой» или «треугольником».

Если выбрана схема «треугольник», фазные токи в 3-х отмотках будут в 1,73 раза меньше, чем общий ток, отдаваемый генераторной установкой.

Вот почему в автомобильных генераторах большой мощности чаще всего применяется схема «треугольника».

Это как раз объясняется меньшими токами, благодаря которым удается намотать обмотку проводом меньшего сечения.

Такой же провод можно использовать и в соединениях типа «звезда».

Чтобы созданный магнитный поток шел по назначению, и направлялся к статорной обмотке, катушки находятся в специальных пазах магнитопровода.

Из-за появления магнитного поля в обмотках и в статорном магнитопроводе, появляются вихревые токи.

Действие последних приводит к нагреву статора и снижению мощности генератора. Для уменьшения этого эффекта при изготовлении магнитопровода применяются стальные пластины.

Выработанное напряжение поступает в бортовую сеть через группу диодов (выпрямительный мост), о котором упоминалось выше.

После открытия диоды не создают сопротивления, и дают току беспрепятственно проходить в бортовую сеть.

Но при обратном напряжении I не пропускается. Фактически, остается только положительная полуволна.

Некоторые производители автомобилей для защиты электроники меняют диоды на стабилитроны.

Главной особенностью деталей является способность не пропускать ток до определенного параметра напряжения (25-30 Вольт).

После прохождения этого предела стабилитрон «пробивается» и пропускает обратный ток. При этом напряжение на «плюсовом» проводе генератора остается неизменным, что не несет риски для устройства.

К слову, способность стабилитрона поддерживать на выводах постоянное U даже после «пробоя» применяется в регуляторах.

В результате после прохождения диодного моста (стабилитронов) напряжение выпрямляется, становится постоянным.

У многих типов генераторных установок обмотка возбуждения имеет свой выпрямитель, собранный из 3-х диодов.

Благодаря такому подключению, протекание тока разряда от АКБ исключено.

Диоды, относящиеся к обмотке возбуждения, работают по аналогичному принципу и питают обмотку постоянным напряжением.

Здесь выпрямительное устройство состоит из шести диодов, три их которых являются отрицательными.

В процессе работы генератора ток возбуждения ниже параметра, который отдает автомобильный генератор.

Следовательно, для выпрямления тока на обмотке возбуждения достаточно диодов с номинальным током до двух Ампер.

Для сравнения силовые выпрямители имеют номинальный ток до 20-25 Ампер. Если требуется увеличить мощность генератора, ставится еще одно плечо с диодами.

Режимы работы

Чтобы разобраться в особенностях функционирования автомобильного генератора, важно понять особенности каждого из режимов:

  • В процессе пуска двигателя главным потребителем электрической энергии выступает стартер. Особенностью режима является создание повышенной нагрузки, что приводит к уменьшению напряжения на выходе АКБ. Как следствие, потребители берут ток только с аккумулятора. Вот почему при таком режиме батарея разряжается с наибольшей активностью.
  • После завода двигателя автомобильный генератор переходит в режим источника питания. С этого момента устройство дает ток, который необходим для питания нагрузки в автомобиле и подзаряда АКБ. Как только аккумулятор набирает требуемую емкость, уровень зарядного тока снижается. При этом генератор продолжает играть роль главного источника питания.
  • После подключения мощной нагрузки, например, кондиционера, обогрева салона и прочих, скорость вращения ротора замедляется. В этом случае автомобильный генератор уже не способен покрыть потребности автомобиля в токе. Часть нагрузки перекладывается на АКБ, который работает в параллель с источником питания и начинает постепенно разряжаться.

Регулятор напряжения - функции, типы, контрольная лампа

Ключевым элементом генераторной установки является регулятор напряжения - устройство, поддерживающее безопасный уровень U на выходе статора.

Такие изделия бывают двух типов:

  • Гибридные - регуляторы, электрическая схема которых включает в себя как электронные приборы, так и радиодетали.
  • Интегральные - устройства, в основе которых лежит тонкопленочная микроэлектронная технология. В современных автомобилях наибольшее распространение получил именно этот вариант.

Не менее важный элемент - контрольная лампа, смонтированная на приборной панели, по которой можно делать вывод о наличии проблем с регулятором.

Зажигание лампочки в момент пуска мотора должно быть кратковременным. Если же она горит постоянно (когда генераторная установка в работе), это свидетельствует о поломке регулятора или самого узла, а также необходимости ремонта.

Тонкости крепления

Фиксация генераторной установки производится при помощи специального кронштейна и болтового соединения.

Сам узел крепится в передней части двигателя, благодаря специальным лапам и проушинам.

Если на автомобильном генераторе предусмотрены специальные лапы, последние находятся на крышках мотора.

В случае применения только одной фиксирующей лапы, последняя ставится только на передней крышке.

В лапе, установленной в задней части, как правило, предусмотрено отверстие с установленной в нем дистанционной втулкой.

Задача последней заключается в устранении зазора, созданного между упором и креплением.

Крепление генератора Audi A8.

А так агрегат крепиться на ВАЗ 21124.

Неисправности генератора и способы их устранения

Электрооборудование автомобиля имеет свойство ломаться. При этом наибольшие проблемы возникают с АКБ и генератором.

В случае выхода из строя любого из этих элементов эксплуатация ТС в нормальном режиме работы становится невозможной или же авто оказывается вовсе обездвиженным.

Все поломки генератора условно делятся на две категории:

  • Механические . В этом случае проблемы возникают целостностью корпуса, пружин, ременным приводом и прочими элементами, которые не связаны с электрической составляющей.
  • Электрические . Сюда относятся неисправности диодного моста, износ щеток, замыкание в обмотках, поломки реле регулятора и прочие.

Теперь рассмотрим список неисправностей и симптомы более подробно.

1. На выходе недостаточный уровень зарядного тока:


2. Вторая ситуация.

Когда автомобильный генератор выдает необходимый уровень тока, но АКБ все равно не заряжается.

Причины могут быть разными:

  • Низкое качество протяжки контакта «массы» между регулятором и основным узлом. В этом случае проверьте качество контактного соединения.
  • Выход из строя реле напряжения - проверьте и поменяйте его.
  • Износились или зависли щетки - замените или очистите от грязи.
  • Сработало защитное реле регулятора из-за наличия замыкания на «массу». Решение - отыскать место повреждения и убрать проблему.
  • Прочие причины - замасливание контактов, поломка регулятора напряжения, витковое замыкание в обмотках статора, плохое натяжение ремня.

3. Генератор работает, но издает повышенный шум.

Вероятные неисправности:

  • Замыкание между витками статора.
  • Износ места для посадки подшипника.
  • Послабление шкивной гайки.
  • Разрушение подшипника.

Ремонт генератора автомобиля всегда должен начинаться с точной диагностики проблемы, после чего причина устраняется путем профилактических мер или замены вышедшего из строя узла.

Практика эксплуатации показывает, что поменять автомобильный генератор несложно, но для решения задачи требуется соблюдать ряд правил:

  • Новое устройство должно иметь аналогичные токоскоростные параметры, как и у заводского узла.
  • Энергетические показатели должны быть идентичными.
  • Передаточные числа у старого и нового источника питания должны совпадать.
  • Устанавливаемый узел должен подходить по размерам и с легкостью крепится к мотору.
  • Схемы нового и старого автомобильного генератора должны быть одинаковыми.

Учтите, что устройства, смонтированные на автомобилях зарубежного производства, фиксируются не так, как отечественного, к примеру, как на генератор TOYOTA COROLLA
и Лада Гранта
.Следовательно, если менять иностранный агрегат изделием отечественного производства, придется установить новое крепление.

В завершение рассказа об автомобильных генераторах стоит выделить ряд советов, что необходимо, а чего нельзя делать автовладельцам в процессе эксплуатации.

Главный момент - установка, в процессе которой важно с предельным вниманием подойти к подключению полярности.

Если ошибиться в этом вопросе, выпрямительное устройство поломается и возрастает риск возгорания.

Аналогичную опасность несет и пуск двигателя при некорректно подключенных проводах.

Чтобы избежать проблем в процессе эксплуатации, стоит придерживаться ряда правил:

  • Следите за чистотой контактов и контролируйте исправность электрической проводки автомобиля. Отдельное внимание уделите надежности соединения. В случае применения плохих контактных проводов уровень бортового напряжения выйдет за допустимый предел.
  • Следите за натяжкой генератора. В случае слабого натяжения источник питания не сможет выполнять поставленные задачи. Если же перетянуть ремень, это чревато быстрым износом подшипников.
  • Отбрасывайте провода от генератора и АКБ при выполнении электросварочных работ.
  • Если контрольная лампочка загорается и продолжает гореть после пуска мотора, выясните и устраните причину.

Отдельное внимание стоит уделить реле-регулятору, а также проверке напряжения на выходе источника питания. В режиме заряда этот параметр должен быть на уровне 13,9-14,5 Вольт.

Кроме того, время от времени проверяйте износ и достаточность усилия щеток генератора, состояние подшипников и контактных колец.

Высота щеток должна измеряться при демонтированном держателе. Если последний износился до 8-10 мм, требуется замена.

Что касается усилия пружин, удерживающих щетки, оно должно быть на уровне 4,2 Н (для ВАЗ). При этом осматривайте контактные кольца - на них не должно быть следов масла.

Также автовладелец должен запомнить и ряд запретов, а именно:

  • Не оставляйте машину с подключенной АКБ, если имеются подозрения поломки диодного моста. В противном случае аккумулятор быстро разрядится, и возрастает риск воспламенения проводки.
  • Не проверяйте правильность работы генератора путем перемыкания его выводов или отключения АКБ при работающем двигателе. В этом случае возможна поломка электронных элементов, бортового компьютера или регулятора напряжения.
  • Не допускайте попадания технических жидкостей на генератор.
  • Не оставляйте включенным узел в случае, если клеммы АКБ были сняты. В противном случае это может привести к поломке регулятора напряжения и электрооборудования авто.